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ABSTRACT - In this paper, we present a new procedure for texture classification of satellite images. 

Parameters derived from the experimental variogram are introduced and tested to determine if the classification 

of land cover classes is improved. We give a different treatment to the periodic directional variograms which are 

computed using an adaptive window size. Then, a stepwise analysis process is done to select the most 

discriminant features, and simultaneously eliminate correlated features. Finally, a validation test is made to 

quantify the usefulness of the proposed texture features in the discrimination of several urban areas and 

agricultural and forest areas, using QuickBird satellite images. The results show the usefulness of the features 

selected in performing image classification. 

 

 

 

1. INTRODUCTION 

 

Since its development in the mining industry 

geostatistics has been applied in different fields of 

study. However, in image analysis, and more 

specifically in texture analysis, the use of these 

techniques is relatively new. Different methods 

have been proposed to incorporate geostatistics to 

image analysis (see for example, Miranda et al. 

(1992, 1998), Chica-Olmo and Abarca-Hernandez 

(2000) or Maillard (2003)), with varying results. A 

well known tool used in geostatistics is the 

experimental semivariogram. From here on in this 

work we will be using the name variogram instead 

of experimental semivariogram.  

 

For continuous variables, such as reflectance in a 

given waveband, the variogram is defined as half 

the average squared difference between values 

separated by a given lag h, where h is a vector, in 

both distance and direction, Atkinson and Lewis 

(2000). 
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Function (1) relates semivariance to spatial 

separation and provides a concise and unbiased 

description of the scale and pattern of spatial 

variability, Curran (1988). Durrieu et al. (2005) 

show that some textures have variograms that 

reflect certain periodicity in the image. Variograms 

often increase continuously with lag distance, 

however, the variogram is not restricted to such 

monotonic behavior and decreasing segments or 

periodicity can be observed. This variogram 

structures are identified as “hole effect” structures, 

and can offer valuable information which shouldn’t 

be discarded (Pyrcz et al., 2003). A periodic 

behavior indicates the existence of spatial 

structures in the images under study. At the same 

time this periodic characteristic of the variogram 

let us determine the window size to use. Different 

textures with their respective variogram curves can 

be seen in Figure 1: 

 

 
 

Figure 1. Different textures with their respective 

variogram curves. 
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In this paper we determine that the range and the 

sill and other values of the variogram curve near 

the origin, provide useful information about the 

texture been studied. From these values, we 

determine different indices. In the cases where the 

variogram curve has a periodic behavior, more 

indices are extracted. Once these indices are 

obtained the most discriminant ones are chosen and 

a classification of the study area is made. 

 

2. MATERIALS AND METHODS 

 

2.1 Study area and data 

 

The analysis was performed over two subsets of a 

QuickBird satellite image:  

 Subset 1: From the panchromatic band 

of the image (0.61 m/pixel) (Figure 2). The area 

studied is located to the north of the province of 

Valencia, (Spain), and it is dominated by 

agricultural land with the primary production being 

oranges, as well as some cereal crops. There are 

also pine forests, mostly at the hill sides, with some 

outcrops of pine trees between the cultivated land. 

Six types of land cover classes were differentiated 

in order to test the usefulness of the method: forest, 

not cultivated land, cultivated with crops, 

cultivated with orange trees, cultivated with 

degraded orange trees, and young orange trees.  

 

 

 
Subset 1 

 

Figure 2. Subset 1: image of cultivated land 

 

 

Subset 2: It corresponds to the blue band 

of the same QuickBird image (2.4 m/pixel), 

resampled to 5 m/pixel, considered to be the most 

appropriate resolution for the average texture 

classes tested (Figure 3). This area contains a part 

of the city of Valencia. Four classes were defined: 

old urban areas, new building areas, facilities and 

industrial areas, parks and cultivated land. 

 

 

 
Subset 2 

 

Figure 3. Subset 2: image of part of the city of 

Valencia 

 

2.2 Window size determination 

 

To incorporate this concept first we have to treat 

the digital number of each pixel as a variable, and 

as a realization of a random spatial process, and in 

that case a variogram can be calculated in each 

pixels neighborhood window (Chen and Gong, 

2004), which size is determined as follows: 

 

The window size is an important parameter, due to 

the fact that has to be large enough to contain a 

representative part of the texture to which a single 

pixel belongs, but not as large as to include a part 

of an adjacent texture. In this study this issue is 

divided into two consecutive steps: 

 

1) Omnidirectional Variogram: 

A fixed window size of 30 pixels is used. This size 

was considered large enough to account for all the 

variability present in the texture. An 

omnidirectional variogram is computed over this 

window. 

 

2) Directional or omnidirectional variogram:  

We distinguish two cases according to the 

behaviour of the omnidirectional variogram 

computed in the first step, and the window size will 

be different depending on the result obtained. 

a) If the omnidirectional variogram presents 

periodicity, the size of the final window 

will be equal to the distance at which the 

second maximum value of the curve is 

reached. Over this window, eight 

directions are considered to compute the 

new variogram: 0°, 22.5°, 45°, 67.5°, 

90°, 112.5°, 135° y 157.5°. Once these 

eight variograms are computed, the 

parameters are extracted from the 

variogram in the direction of maximum 

variability. 

b)  If the omnidirectional variogram does 

not present periodicity, the window size 

will be the maximum possible, that is, 30 

pixels. In this case, instead of a 
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directional variogram, the same 

omnidirectional variogram of the first 

step is used to extract the corresponding 

parameters. 

 

2.3 Parameter extraction and selection 

 

The indices computed were based on mean values, 

variances and simple ratios between values at the 

first lag up to the first maximum value of the 

variogram, second derivatives of the values at the 

first lag and different integrals. If the result is a 

periodic variogram, a second set of parameters is 

computed. We consider that a variogram is 

periodic if it has a first maximum, a first minimum 

and a second maximum. Then, new parameters 

based on integrals and ratios between the first and 

the second maximum are computed. 

The parameters are divided into three categories: 

 

a) General parameters: In this category there is the 

ratio of the variogram value in the first two lags. 

We also consider ratio of the first  variogram value 

and the variance of the data as an estimation of the 

sill. We also compute the slope at the origin, and 

different derivatives using the first three to four 

variogram values. 
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b) First maximum parameters: Here we define the 

distance at which the expected range is reached, 

the mean of the values up to the expected range 

which we call the first maximum
1maxh , the 

variance of these values and different integrals up 

to that value. 
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c) Second maximum parameters: This last set of 

parameters incorporate information extracted from 

the variogram of the values from the first 

maximum up to the second maximum.  
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A more complete description of the parameters 

used is available in Durrieu et al. (2005). 

 

A low pass filter was applied over the original 

image and the result added to the set of the 

variogram parameters. The intention was to 

incorporate some information derived from the 

mean to the analysis, since the variogram provides 

only information regarding the spatial correlation 

of the data. 

A supervised classification of the two images 

described in paragraph 2.1, was made. The method 

of maximum likelihood was applied to the two 

subsets. This method assumes that the statistics for 

each class in each band are normally distributed 

and calculates the probability that a given pixel 

belongs to a specific class. Each pixel is assigned 

to the class that has the highest probability. 

Training samples of each representative area were 
defined. Edges were not included in the analysis 

although they have a mayor role in classification 

errors Ferro et al. (2002).  

 

3. RESULTS 

 

The results of the classification of the urban area 

can be seen in Table 1. In this case, two analyses 

were made: (1) a classification with all the 

variogram derived indices in the first place, and (2) 

a classification adding the three visible spectral 

bands of the Quickbird image (resampled to 5 m.).  

Some control areas were determined in order to test 

the accuracy of the method. The parameters 

obtained from the variogram were compared with a 

well known texture analysis method, the co-

occurrence matrix method, evaluating in each case 

the classification results. In the case of the co-

occurrence matrix, eight parameters were used. 

 

The results in the three analysis carried out are 

very similar. The best result obtained was an 

overall accuracy of 76.4% with the co-occurrence 

matrix method. With all three methods the old and 

new city areas were difficult to discriminate. 

 

The results obtained in the classification of the 

agricultural area are shown in Table 2. In this case, 

the spectral bands were not included because it was 

considered that the information derived from the 

variogram was enough to give good results in a 

classification.  
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The results obtained comparing both methods are 

again very similar, although in this case the 

variogram method gives a better result, with an 

overall accuracy close to 84%. The parameters 

derived from the variogram provide a better result 

in those classes with regularity and structural 

patterns, such as orange trees. 

 

 

 

 

Old City 83.8 73.7 84.7 74.4 88.9 73.2

New City 70.4 61.9 72.6 63.4 71.3 73.3

Industrial zone 57.9 91.2 59.9 90.8 64.3 77.8

Parks and gardens 81.5 82.1 83.2 88.4 81.4 86.9

Overall

Producers 

accuracy

Users 

accuracy

Urban areas

73.5 75.2

Co-occurrence Matrix

Producers 

accuracy

Users 

accuracy

76.4

Semivariogram
Semivariogram+spectral 

bands

Producers 

accuracy

Users 

accuracy

 
 

Table1. Classification results of urban areas comparing the semivariogram, semivariogram with spectral bands 

and co-occurrence matrix methods  

 

Crops 100.0 93.3 97.5 98.5

Barren soil 94.2 100.0 99.3 98.8

Orange groves 90.1 87.1 90.0 90.8

Young orange groves 69.7 71.2 57.2 73.1

Deg orange groves 62.6 64.4 77.1 52.7

Pine trees 100.0 100.0 99.0 100.0

Overall

Users 

accuracy

Co-occurrenceMatrix

82.9

Semivariogram

Producers 

accuracy

Users 

accuracy

83.9

Agricultural land

Producers 

accuracy

 
 

Table 2. Classification results comparing the semivariogram and co-occurrence methods. 

 

 

 

 

 

 

 

4. CONCLUSIONS 

 

The use of an adaptative window size  maximizes 

the within class variation reducing the between 

class variation and therefore reducing the so called 

“edge effect”. 

The method proposed takes into consideration two 

cases: 

a) variograms with periodic behavior where a 

direction is used. 

b) variograms without periodic behavior where an 

omnidirectional variogram is used. 

This distinction allowed us to better discriminate 

textures that present directionality or some kind of 

spatial structure as is the case of the orange groves 

from those textures that are more homogeneous as 

are barren soils.   

The intention to discriminate between different 

types of orange groves (mature, young and 

degraded) did not work as well as expected, 

especially between young and degraded orange 

groves, that were confused with each other.  

 

The parameters proposed are valid, specially in the 

cases of textures with some structure. The 

parameters that better discriminate are those that 

include the first value of the variogram in any of its 

combinations. 
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