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Abstract 
 

In this article, we propose and evaluate 23 new geostatistical parameters for texture 
classification of satellite images. The parameters are computed from the experimental variogram of 
different subsets of a panchromatic satellite image (QuickBird). The procedure includes an adaptive 
definition of the window size, as a function of the periodic behaviour of the variogram. Four 
different methods to compute the variogram are compared, based on the directionality, two of which 
introduce a pre-classification of the variogram as cyclic or non-cyclic. In the first case, additional 
parameters are included in the model, in order optimise the final texture classification. The most 
discriminant features are selected by means of a forward stepwise discriminant analysis. The results 
show accuracies of up to 81% for a 6 texture classes problem, and over 86% for 5 classes, using 
between 7 and 9 variables. In future work, the indices will be implemented and evaluated in a pixel 
by pixel classification procedure. 
 
1. Introduction 
 

Texture analysis for classification of satellite images is usually used when the landscape 
units are spectrally heterogeneous, as it provides contextual information about the distribution of 
grey levels around a pixel in the image. Different methods have been attempted in the past to 
incorporate texture into the classification of digital images. Most techniques used for image texture 
analysis are based on statistical features, filtering processes or a combination of both. A well known 
statistical method  used in texture analysis is the incorporation of the semivariogram function. As a 
result, this function gives a curve known as the experimental semivariogram. From this point on, 
instead of experimental semivariogram, the curve will be called variogram. Miranda et al. (1992, 
1998), and Carr and Miranda (1998) started to use information extracted from the variogram to 
incorporate texture into image classification. Several authors have been using these techniques, 
introducing new approaches aiming to improve the classification processes. For example, it has 
been proven that the range is directly related to the size of objects or patterns in an image 
(Woodcock et al, 1988a, 1988b). On the other hand, the slope at the origin depends on the 
variability of the objects in the scene (Serra, 1982). Chica-Olmo and Abarca-Hernandez (2000) 
used the value of the variogram at the first lag for classification, while Maillard (2003) gave more 
weight to the values of the smaller lags than to those of the greater ones, following a logarithmic 
scale. Jakomulska and Clarke (2000) applied the variogram to derive a series of indices related to 
the texture in order to improve the classification results. 

In this article, the objective is to design new parameters extracted from the variogram and to 
evaluate their use for the discrimination of different textures in images. For this purpose, we 
propose several parameters based on values of the variogram up to the sill, and also the distinction 
between variograms with cyclic and non-cyclic behaviour, using specific indices for those cases that 
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are extracted from the first to the second peak of the variogram. However, no attempt to model the 
variogram is made, due to the necessity of using different models for each type of texture. We base 
the tests on previous software (Carr, 1996; Pardo-Igúzquiza and Dowd, 2001), which has been 
modified and adapted for our purposes. Additionally, we introduce new code for the 
implementation of the new parameters.  

 
2. Materials and Methods 
 
2.1 Area of study and data 

 
The work area is located to the north of the city of Valencia (Spain), and is dominated by 

agricultural land, especially orange groves and diverse horticulture crops in different stages of their 
cycle. There are also some residential areas mixed with small forest areas, mainly composed of pine 
trees. Six types of land cover classes were defined as a basis for testing the potential and utility of 
the variogram in characterising the texture: orange tree groves, orange tree groves degraded by 
previous diseases or in early stage of growth, horticulture crops, fallow land, pine trees, and barren 
soil. 

The original image used was a panchromatic QuickBird of the area with a spatial resolution 
of 0.61 meters. From this image, fifty subsets with a size of 50 rows x 50 columns were obtained for 
each of the six classes defined, in such a way that each subset contained a portion of scene that was 
representative of only one of the texture classes considered (Figure 1). 
 
2.2 Calculation of the variogram 
 

Geostatistics studies the autocorrelation of the values of a variable taking into consideration 
its geographic location. To describe this correlation, it uses the semivariogram, a  function that 
relates semivariance to spatial separation and it provides a concise and unbiased description of the 
scale and the pattern of spatial variability (P. J. Curran, 1988). For continuous variables, such as 
reflectance in a given spectral band, the experimental semivariogram is defined as half of the 
average squared difference between values separated by a given lag, where this lag is a vector in 
both distance and direction (Atkinson and Lewis, 2000). The experimental semivariogram (here 
denoted as variogram) is defined as: 
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where )( ixZ represents the gray level for a generic pixel in the location ix ; N is the number of 
pixels considered; and h is a vector that represents the distance between pixels in a particular 
direction. 

A variogram can be calculated in the neighbourhood window of each pixel, treating each 
pixel digital number as the value of a variable, and considering this variable as a realisation of a 
random spatial process (Chen and Gong, 2004). The distance at which the values of the variable are 
no longer correlated is defined when the variogram reaches a plateau, and it approximates to the 
range of the theoretic variogram model. This plateau is known as the sill (Isaaks and Srivastava, 
1989). Most of the information is contained in the values of the variogram up to the sill. Variograms 
often increase continuously with lag distance. However, the variogram is not restricted to such 
monotonous behaviour and decreasing segments or cyclicity can be observed. Those variogram 
structures are identified as “hole effect” structures, and can offer valuable information which should 
not be discarded (Pyrcz and Deutsch, 2003). 

For the analyses, FORTRAN code was written to read the image, generate the variograms, 
and compute the derived parameters to be used in the final classifications.  
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2.2.1. Determination of the optimal window size 
 
The window size needs to be larger than the range of influence to characterise the first part of the 
variogram, and large enough to reveal any periodicities in the data (Woodcock et al, 1988a). In this 
work, these two constraints were considered to be reached using a window size of 30 x 30 pixels. 
This window size was obtained empirically after trying different sizes and evaluating the results 
and, consequently, an omnidirectional variogram was derived from a moving window of 30x30 
pixels. First, the cyclicity of the omnidirectional variogram is automatically checked. If the 
variogram is not cyclic, its first maximum value is considered to be very close to the sill of the 
modeled variogram. For this reason, the distance at which this maximum is reached is assumed to 
be equivalent to the range of the variogram. Therefore, if there is not cyclicity, the size of the final 
window is obtained from the value of this denominated experimental range. However, if cyclicity is 
found, the window size is fixed as the distance to the second maximum.  
 
2.2.2. Variogram computation methods 
 
Four different methods were employed to compute the variogram using the selected window. In 
each one a modification was introduced: 

1) Omnidirectional variogram: It is computed as an average of all possible directions. The 
first maximum value of the variogram curve is determined, and this distance is considered to be the 
experimental range. In this method, some indices are calculated with this distance as a limit. 

2) Directional variogram: It is calculated over eight different directions: 0°, 22.5°, 45°, 
67.5°, 90°, 112.5°, 135° y 157.5°. An angular tolerance of 22.5° to either side of each direction is 
selected (Figure 2-A). This angular tolerance was chosen with the criteria that there was a sufficient 
number of data pairs for the calculation of the variogram, and also to keep overlapping between 
adjacent directions at a minimum. After this, a decision rule is applied in order to determine the 
direction in which the indices will be computed, basing it on the direction of maximum variability. 
This is determined as the direction that is orthogonal to the one in which the variogram slope is the 
smallest. In this method, all the indices proposed up to the first maximum were computed. 

3) Cyclic/Non-cyclic directional variogram: The same variogram as in case 2, but applying 
a new decision rule to distinguish between variograms with cyclic and non-cyclic behaviour. This 
decision rule is based on the computation of the area between the first two peaks of the variogram. 
In the cyclic case, the values of the variogram up to the second maximum are included in the 
calculations, and therefore more indices are obtained.  

4) Cyclic/Non-cyclic directional variogram using side angular limits: In this last case the 
variogram is calculated using the same restrictions in direction and angular tolerance as in the last 
two cases, incorporating one more limitation: an angular side limit (Figure 2-B). A bandwidth of 3 
pixels from each side of every central direction line was selected. Once all of the directions are 
calculated, the decision rule is applied to determine if the variogram is cyclic or non-cyclic. 

 
2.3 Parameter extraction and selection 

To obtain the results of this paper we have used 23 indices, which are based on the variogram 
values at the first lags up to the two first maximum values. The parameters have been separated into 
three categories for better understanding. Next, we explain a subset that we determine as 
representative of each category. In the following mathematical formulas, ih  represents the ith-lag 

and khhh kk ∀−= + ,1 ; that is, ih  are uniformly separated. ( )ihγ  is defined by the expression (1). 
(1) General parameters. We have computed 8 parameters using the variance of the data 

representing the gray levels of the digital numbers and considering simple ratios based on 
)( 1hγ (the value of the variogram at the first lag). We also consider different discrete 
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approximations to the first and the second derivative of the variogram model at the second lag, 
.2h For example, we calculate the parameters: 
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Gp1 and Gp3 use a ratio with the variogram value in the first lag. Gp4 approximates the first 
derivative of the variogram model in 1h  and Gp5 numerically evaluates the second derivative of the 
variogram model in 2h . Since the variogram tends to reach the sill near the variance, Gp1 will be an 
indicator of the relationship between the spatial correlation at short and longer distances. Gp3 
attempts to describe the variability changes at short distances. Gp4 and Gp5 show the behaviour of 
the variogram near the origin and describe the heterogeneity of the objects at short distances in the 
scene. 

(2) First maximum parameters. Eight parameters were calculated in this category, using the 
variogram values from the first lag up to the first maximum value of the variogram. The lag where 

)(hγ  reaches the first maximum, 1maxh , as well as the average and variance of the considered lags 
were used. Then, the integral of the variogram was estimated using a composed trapezoidal 
formula. Some examples are: 
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Assuming a monotone variogram, Fmp1 would be defined by the maximum distance in the window. 
This parameter measures the variability in longer distances. Fmp2 and Fmp3 are the mean and the 
variance, respectively, of all the variogram values between the first value and the value at the first 
maximum. Fmp4 is an indicator of homogeneity. Fmp7 represents the integral of values up to the 
first maximum. 

(3) First to second maximum parameters. A total of 7 additional parameters were derived 
in the cases where a cyclic variogram is present. In these cases, we considered the variogram values 
between the first and the second local maximum. We also computed ratios and we numerically 
evaluated the integral of the variogram from 1maxh  to 2maxh , which coincide with the lags where the 
variogram reached the first and second local maximum, respectively. In this category we have 
defined, for example: 

12 maxmax1 hhSmp −= ; 
( )
( )







−=

1

2

max

max13
h
h

Smp
γ
γ

;  

( ) ( ) ( )








+










+= ∑

−

+=
2max

1max

1max
1max

2

1

2
2

5 hhhhSmp
i

i γγγ ; 

 



 5

( ) ( ) ( )

( ) ( ) ( )( )




















+−











+










+

−=
∑

−

+=

2212

2

2

1

1

maxmaxmaxmax

max

1max

1max
max

2

2
2

17
hhhhh

hhhh

Smp
i

i

γγ

γγγ

 

Smp1 represents the size of the regularity or structural pattern of a texture. Smp3 is an indicator of 
the decay or increase of the variogram cycle, and represents differences in the intensity level of 
repeated structures. Smp7 quantifies the “hole effect”, and it increases as the variability or contrast 
of the regularity pattern increases. 

 
Finally, the selection of the most discriminant variables or indices to be used, and the classification 
of the different textures itself, was done by means of forward stepwise discriminant analysis. In this 
manner, the best indices were used in each case. In addition a principal component analysis was 
performed in order to make groups of variables depending upon the type of information that they 
provide. 

 
3. Results 
 

The principal components analysis is useful for grouping variables that explain the same 
properties in a multivariate problem. Two different analyses were done, one using the set of indices 
that considers only values up to the first maximum, and a second one using the set of indices with 
values up to the second maximum, that were conceived to provide information only about the cyclic 
variograms, this is, those that represent textures with a periodic or semi-periodic pattern. In both 
cases, several well defined groups of variables are noticeable. Interpreting those groups, we find 
that in the first case they include indices that represent properties such as spatial frequency, gray 
level variability, contrast or homogeneity. For the cyclic variables, they are grouped according to 
the presence of regular structures in the landscape, irregular patterns (“dampening” effect or decay 
of the variogram), or even the magnitude of the “hole effect”. 

In the application of the forward stepwise discriminant analysis for the selection of 
variables to be included in the classification process, depending on the method used to compute the 
variogram, between 7 and 9 variables in the model were usually sufficient to obtain satisfactory 
results. In addition, it was observed that at least one variable belonging to each of the former 
semantic groups of variables, interpreted in the principal component analysis planes, was included. 
They were not always the same variables, but they represented the same group of texture properties. 

Since the two land cover classes corresponding to orange groves were those that generated 
more confusion in all cases, an additional second analysis was undertaken where these two classes 
were combined into one. As a result, the accuracy increased in all cases. Regarding the different 
methods used to compute the variogram, the best overall accuracy in the classification was obtained 
using the cyclic/non-cyclic directional variogram with side angular limits: 81% in a problem of six 
texture classes, and 86.7% considering only five classes (Tables 1 and 2). However, the use of the 
onmidirectional variogram produced similar results, 77.7% and 85.7%, respectively, while the 
lowest accuracy corresponded to the directional variogram. 

Studying the producer and user accuracies, it was observed that the omnidirectional 
variogram perform better in the uniform and homogeneous textures, such as barren soil and fallow 
fields, but the cyclic/non-cyclic directional variogram with side angular limits provides higher 
accuracy values in those textures containing a gray level pattern with spatial structure, like the 
textures of orange groves. Therefore, the classes with a marked directionality were benefited with 
the incorporation of the directional and cyclic restriction in the analysis. However, for those classes 
having intermediate properties, the results are not so evident. 
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Finally, the most discriminant parameters were those that included the first value of the 
variogram in their formulas, for instance, the ratio of the first and second values of the variogram, 
or the subtraction of the first value by the average of all the values up to the first maximum. Other 
variables that provided good results were: the average of all the values up to the first maximum, and 
the distance at which the first maximum value was reached (similar to the range). 
 
4. Conclusions 
 

An exhaustive number of indices extracted from the variogram of different texture images 
has been proposed in order to classify the images according to their type of texture. The results 
show that, due to the correlation between indices, they can be grouped in approximately nine sets of 
indices, each of which would explain a different texture property. In this manner, the information 
inherent to the variogram can be parameterised and then used for texture classification.  

The method proposed for the definition of an adaptive window size, based on the 
computation of the first and second maximum values for every neighbourhood, seems to perform 
properly. 

The new approach based on the distinction of cyclic and non-cyclic variograms, and the 
computation of a directional variogram with side angular limits, allows us to discriminate more 
accurately those textures that present a directionality, or at least a certain pattern or spatial structure, 
such as orange groves or linear crops. However, the omnidirectional variogram performs better for 
more uniform and homogeneous textures.  

Among the indices or parameters with higher discrimination power are those that include 
the first value of the variogram. On the other hand, the parameters obtained from the first to the 
second maximum offer specific information about the periodicity in the image, and as such are only 
considered when the variograms are cyclic. The classification results are very encouraging, 
especially taking into consideration that the original data is a panchromatic image with only one 
band. Future work will be focused on the implementation of a selection of the proposed indices to 
achieve the classification of images on a pixel by pixel basis. 
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 a)      b)       c)   d)     e)        f) 
Figure 1. Examples of texture class images and their respective variograms. a) horticulture crops; b) orange 
groves; c) fallow fields; d) pine trees; e) barren soil; and f) degraded orange groves. 

 
    a)        b) 
Figure 2. Schematic description of the differences between (a) the directional variogram, and (b) the 
directional variogram using side angular limits. The blue dashed line represents the direction of the 
variogram. The angle between the two blue continuous lines is the angular tolerance. The two black lines 
are the side limits, and the pixels inside the red figures are those used for the computation of the 
variograms. 
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Omnidirectional 

Variogram Directional Variogram Cyclic/Non-Cyclic Cyclic/Non-Cyclic + 
limits 

    
Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Crops   80,0 95,2 86,0 75,4 82,0 82,0 86,0 78,2 
Barren soil   82,0 73,2 72,0 66,7 72,0 66,7 74,0 75,5 
Orange groves 83,0 100,0 82,0 98,8 92,0 97,9 93,0 97,9 
Fallow fields   90,0 83,3 82,0 75,9 86,0 74,1 82,0 78,8 
Pine trees   96,0 73,8 86,0 82,7 80,0 90,9 92,0 93,9 
Overall   85,7 81,7 84,0 86,7 

 
Table 2. Comparison of accuracies obtained with the four different methods for a texture classification 
problem of five classes. 

    
Omnidirectional 

Variogram Directional Variogram Cyclic/Non-Cyclic Cyclic/Non-Cyclic + 
limits 

    
Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Producers 
accuracy 

Users 
accuracy 

Crops   80,0 97,6 86,0 81,1 80,0 95,2 86,0 82,7 
Barren soil   82,0 77,4 72,0 66,7 76,0 65,5 78,0 72,2 
Orange groves 62,0 70,5 64,0 71,1 86,0 81,1 78,0 84,8 
Fallow fields   94,0 83,9 82,0 75,9 84,0 75,0 78,0 79,6 
Pine trees   94,0 82,5 82,0 83,7 78,0 90,7 88,0 95,7 
Deg. Orange groves 54,0 55,1 52,0 57,8 70,0 72,9 78,0 73,6 
Overall   77,7 73,0 79,0 81,0 
 
      

 
Table 1. Comparison of accuracies obtained with the four different methods for a texture classification 
problem of six classes. 


