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ABSTRACT: 
 
Land Use/Land Cover (LU/LC) geo-databases have increasing relevance in many different fields and applications. In this study, we 
propose the definition of new spectral variables based on the high spectral and spatial resolution of WorldView-2 imagery. These 
variables, in addition to texture and structural features extracted from the same images, are applied for object-oriented classification 
of agricultural, forest and urban areas, and the results are evaluated using available field truth data. Parcel-based approach is 
employed, where image are segmented according the cartographic boundaries contained in a cadastral geospatial database. Results 
show that the combination of descriptive features that provide information from different characteristics of the images (spectral, 
texture, structural) produces a noticeable improvement of the classification results. 
 
 

1. INTRODUCTION 

In the evolution of geoinformation systems, a strategic issue is 
the application and development of new methods that allow for 
an efficient generation and update of geographic databases, and 
by optimally incorporating new remote sensing data and other 
sources of information. The production and maintenance of 
Land Use/Land Cover (LULC) geo-databases, at different 
scales, are fundamental for territory management and for the 
economic development of regions and countries. Their 
availability, accuracy and currency provide the basis for 
decision taking in many subjects, such as natural resources 
exploitation, environmental protection, urban sprawl monitoring 
and others. However, the updating procedures are still slow and 
expensive, due to the tedious photointerpretation tasks and 
exhaustive field work involved in most of the cases. The 
technical improvements for the acquisition of spatial data, in 
terms of spatial, spectral and radiometric resolution, as well as 
the frequency of their availability, have been important during 
the last several years. Therefore, this new scenario reveals the 
need of developing new techniques and algorithms for 
managing such information, and making it useful to solve 
specific problems in mapping and geo-database updating. 
 
Satellite image classification has been used for many years for 
LULC mapping, due to the frequency of the data and, very 
often, to the lower economic cost compared to the aerial 
imagery. Traditional digital image classification methods assign 
a thematic value to each pixel in the image, based on the 
different digital values of the pixel in multiple spectral bands. 
This methodology may be appropriate for homogeneous classes 
or categories, but not for classes characterised by a high spectral 
mixture or by heterogeneous distribution of the landscape 
elements. The introduction of texture analysis and features 
(Haralick et al., 1973; Laws, 1985; Curran, 1988; etc.) improves 
the results in these heterogeneous areas, but also has the 
restriction of the border effect (Ferro and Warner, 2002; Ruiz et 
al., 2004), or misclassification along the limits between classes.  
 

The availability of new high-resolution satellite sensors in the 
last decade has increased the number and the detail of LULC 
projects promoted by different administrations and 
governments, aiming the creation and updating of geo-databases 
at regional, national, and international levels. However, two 
main practical and methodological problems arise when high-
resolution images are used for LULC classification: First, the 
higher the detail captured by the images, the higher the internal 
variability of the areas or plots covered by them (Berberoglu 
and Curran, 2004). The second aspect is that the spectral 
information derived from current high-resolution satellite image 
data is definitely limited by the broad range of the spectral 
bands and the lack of attention paid to the precise location of 
these bands along the electromagnetic spectrum, usually 
restricted to three visible and one infrared bands, in addition to 
one panchromatic band, that in many cases is only used for 
resolution merging or image fusion with the spectral bands. 
This issue has particular relevance when mapping vegetation, 
and in those projects based on large geographic areas, with 
many vegetation types and ecological strata.  
 
The internal variability that often exists in the high-detail 
cartographic units can be faced using object-oriented 
classification techniques. These methods consider, and even 
take advantage of the spatial distribution of the elements that 
compose a particular landscape or an administrative unit, in 
order to improve the accuracy of LULC classifications. This 
discipline is attracting the interest of many researchers in the 
last few years, as reviewed by Blaschke (2010). Using these 
innovative techniques, each cartographic unit (e.g., a plot or 
polygon) is analysed as a whole, allowing to spatially relate the 
pixel values inside the limits, and to generate new descriptive 
features providing information about the internal variability and 
the distribution of the elements in the object. The texture 
features can be computed as a unique value for the object, 
eliminating the problem of the border effect, and new structural 
features can be extracted, providing information about the 
spatial arrangement of the elements inside the objects, such as 
regular patterns (Ruiz et al., 2007). On the other hand, the 
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problem of the restricted spectral information typical from high-
resolution satellite sensors may be handled by using the new 
images provided by the satellite WorldView-2, with 8 spectral 
bands in the visible and infrared areas of the electromagnetic 
spectrum, together with the approximately 0.5 m/pixel 
resolution of the panchromatic band. 
 
The objective of this study is to investigate the use of object-
oriented classification methods over high spectral and spatial 
resolution WorldView-2 images, and to evaluate its performance 
on LULC classification for automated geo-database generation 
and updating. For this purpose, an image covering an area of 
100 km2 has been used, objects have been defined using 
administrative cartographic limits of the area, and different 
types of descriptive features have been extracted for every plot 
(object) from the WorldView-2 image: spectral, texture, and 
structural. The area of study is located in the region of Galicia, 
in the northwest of Spain. The variety of the study area 
landscape, together with the availability of field samples 
(ground truth), provide an adequate scenario for testing and 
evaluation purposes. 
 
 

2. STUDY AREA AND DATA 

The tests have been performed using data from the local 
administrative area of A Limia, located in the region of Galicia 
(Spain). The landscape is characterized by a broad combination 
of urban areas, diverse agriculture, forest and shrubland. Figure 
1 shows a colour infrared combination of the WorldView-2 
image used. 
 

 
 
Figure 1.  Overview of the study area in a WorldView-2 colour 

infrared image composition. 
 
 
WorldView-2 sensor provides a panchromatic image with 
approximately 0.5 m/pixel resolution, and 8 visible and near 
infrared multiespectral bands with 2 m/pixel, having the 
following spectral ranges: Coastal Blue (400-450 nm), Blue 
(450-510 nm), Green (510-580 nm), Yellow, (585-625 nm), 
Red (630-690 nm), Red-Edge (705-745 nm), Near Infrared-1 
(770-895 nm), and Near Infrared-2 (860-1040nm). 
 
Cartographic boundaries to define the final objects (plots) were 
obtained from the Spanish Land Parcel Information System 
(SIGPAC), a national geospatial database oriented to agriculture 
management. The plots represent a continuous area of land 

within a parcel for a single agricultural use. Besides, a set of 
field data samples from the same year was available. These 
samples have square shape with side sizes of 350 to 500 meters.  
 
 

3. METHODOLOGY 

In this section, a general methodological description of the steps 
followed in the object-oriented feature extraction and 
classification approaches is presented, with references to 
documents containing a more exhaustive explanation. Main 
classification steps include: Class definition, selection of 
training samples, descriptive feature extraction, classification 
method, and evaluation. 
 

  
a. Urban b. Forest 

  
c. Tree orchards d. Shrublands 

  
e. Arable lands f. Sparse vegetation crops 

 
g. Irrigated crops 

 
Figure 2.  Details of colour infrared image compositions of 7 
objects/parcels containing examples of the classes defined. 

 
 
3.1 Class definition and selection of training samples 

A total of seven classes were defined, attending to the 
requirements of the local and National Mapping Agencies that 
elaborate the LULC geo-databases in the area (see Figure 2): 
Urban, Forest, Tree orchards, Shrublands, Arable lands, Sparse 
vegetation crops, and Irrigated crops. Most of the training 
samples were selected from the field samples. Besides, 
additional samples were added by photointerpretation in order 
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to avoid a low representation of some classes. The total number 
of samples (parcels) was 1172, that would be used for training 
and evaluation using the cross-validation technique, using 
independent sets for training the classifier and for evaluation 
purposes. 
 
As described above, spatial objects were created using the 
SIGPAC database plot limits. In order to confer coherence to 
the automatic feature extraction process, which requires a 
minimum parcel surface, and to preserve the classification 
accuracy, parcels with a surface lower than 60 m2 were rejected. 
 
3.2 Per-object feature extraction 

The use of efficient descriptive features is essential for accurate 
classification. At this point, every plot was independently 
processed to extract descriptive features that characterize their 
current land use. The process followed to compute the features 
used in this study can be considered multi-approach, since three 
categories of features were extracted: spectral, textural and 
structural. 
 
Spectral features used provide information about the spectral 
response of objects on the visible and near infrared regions of 
the spectrum, which depends on land coverage types, state of 
vegetation, soil composition, construction materials, etc. These 
features are particularly useful in the characterization of 
spectrally homogeneous classes, such as herbaceous crops or 
fallow fields, WorldView-2 imagery providing more specific 
spectral information compared to other sensors available. Mean, 
standard deviation, minimum and maximum values were 
computed from the eight spectral bands or WordlView-2, and 
also from the Normalized Difference Vegetation Index (NDVI), 
calculated by using the red (R) and the first near infrared 
(NIR1) bands. 
 
Texture features inform about the spatial distribution of the 
intensity values in the image, being useful to quantify properties 
such as heterogeneity, contrast or uniformity related to each 
object (Ruiz et al., 2004). These properties provide additional 
information about the object, useful to characterize the LULC 
inside it. Texture features have been computed per-object from 
the panchromatic band, in order to take advantage of the very 
high spatial resolution of this band. 
 
For every plot, the features proposed by Haralick et al. (1973) 
based on the grey level co-occurrence matrix (GLCM) were 
computed: contrast, uniformity, entropy, variance, covariance or 
product moment, inverse difference moment, and correlation. 
Since an object-oriented approach is used, only one GLCM is 
computed for each object, describing the co-occurrences of the 
pixel values that are separated at a distance of one pixel inside 
the plot, and considering the average value of four principal 
orientations (0º, 45º, 90º and 135º) in order to avoid the 
influence of the orientation of the elements inside the objects. 
Figure 3 shows some examples of GLCM computed for plots 
with different land uses, where the length along the diagonal is 
related to the contrast, and the width of the value distribution 
captures the heterogeneity. 
 
This information was completed with the values of kurtosis and 
skewness of the histogram, representing the shape and assimetry 
of the histogram of an object. Besides, the mean and the 
standard deviation of the edgeness factor for each plot were 
computed (Laws, 1985). The edgeness factor represents the 

density of edges present in a neighbourhood, in our case the 
limits of the object itself. 
 

  

  

  

  
Legend: Co-occurrence frequency: min  max 

 
Figure 3.  Image examples of three different land uses: urban, 

forest and arable lands (left) and their graphic representation of 
the GLCM (origin is in the top left corner) computed per-object 

(right). 
 
 
Structural features provide information of the spatial 
arrangement of different elements inside the object, in terms of 
randomness or regularity of the distribution of the elements. 
This is the case of alignments or regular patterns that are present 
in different man-made landscapes, such as the planting patterns 
of crops and trees in agricultural plots (Ruiz et al., 2007). The 
structural features have been derived from the semivariogram 
computed from the panchromatic band. The semivariogram 
curve quantifies the spatial associations of the values of a 
variable, and measures the degree of spatial correlation between 
different pixels in an image. This is a particularly suitable tool 
in the characterization of regular patterns. For continuous 
variables the expression that describes the experimental 
semivariogram is: 
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where z(xi) = value of the variable in position xi. 
 N = number of pairs of data considered. 
 h = separation between elements in a given direction. 
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The experimental semivariogram representing each object is 
obtained by computing the mean of the semivariograms 
calculated in six directions, ranging from 0º to 150º with a step 
of 30º. Afterwards, each semivariogram curve is filtered using a 
Gaussian filter with a stencil of 3 positions, in order to smooth 
its shape and to eliminate experimental fluctuations. 
 

  

  

  
 

Figure 4.  Detail of images and semivariogram graphs for 
different land uses: irrigated crops, trees orchards, urban, 

shrublands, arable lands, and forest. 
 
 
Some semivariogram graphs examples are shown in Figure 4, 
where this is noticeable that when a periodic spatial behaviour 
exists, as in the tree orchards plot, the graph presents a cyclic 
curve, known as hole effect semivariogram (Pyrcz and Deutsch, 
2003). 
 

 

  
a. Near the origin. b. Up to 1st maximum. 

 
c. Between 1st and 2nd maxima. 

 
Figure 5.  Representation of singular points and parameters 

extracted form semivariogram graphs. 
 

Several structural descriptive features were computed 
considering the singular points of the semivariogram, such as 
the first maximum, the first minimum or the second maximum. 
These parameters characterize the semivariogram behaviour 
according to the position of the lags used in their definition: 
near of the origin, up to the first maximum and between first 
and second maxima. 
 
Ratio between the values of the total variance and the 
semivariance at first lag: 
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Ratio between semivariance values at second and first lag: 
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First derivative near the origin: 
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Lag value where the curve � (h) reaches the first local maximum: 
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Mean of the semivariogram values up to the first maximum: 
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Variance of the semivariogram values up to the first maximum: 
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Ratio between the semivariance at first local maximum and the 
mean semivariogram values up to this maximum: 
 

( )
MFM

h
RMM 1max_g

=  

 
Distance between the first maximum and the first minimum: 
 

11 maxmin hhDMM -=  

 
RVF and RSF features are related to the homogeneity values of 
the grey levels at long and short distances respectively. FDO 
feature shows the variability changes of the data at short 
distances. FML, MFM, VFM and RMM features are related 
with the overall variability of the grey level values. DMM 
feature characterizes periodic patterns within an image-object 
and quantifies the hole effect, which is directly related to the 
variability or contrast of the regularity patterns. These features 
are fully described in Balaguer et al. (2010). 
 
3.3 Classification through decision trees 

Objects were classified by using decision trees. A decision tree 
is a set of organized conditions in a hierarchical structure, in 
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such a way that the class assigned to an object can be 
determined following the conditions that are fulfilled from the 
tree roots (the initial data set) to any of its leaves (the assigned 
class). The algorithm employed in this study is the C5.0, which 
is the latest version of the algorithms ID3 and C4.5 developed 
by Quinlan (1993). This algorithm is widely used to deduce 
decision trees for classifying images (Zhang and Liu, 2005). 
 
The process of building a decision tree begins by dividing the 
collection of training samples using mutually exclusive 
conditions. Each of these sample subgroups is iteratively 
divided until the newly generated subgroups are homogeneous, 
that is, all the elements in a subgroup belong to the same class. 
For each possible division of the initial data group, the impurity 
degree of the new subgroups is computed, and the condition 
which gives the lower impurity degree is chosen. This is iterated 
until the division of the original data into homogeneous 
subgroups is carried out by using the gain ratio as splitting 
criterion. This criterion employs information theory to estimate 
the size of the sub-trees for each possible attribute and selects 
the attribute with the largest expected information gain, that is, 
the attribute that will result in the smallest expected size of the 
sub-trees. 
 
A total of ten decision trees were generated for classification, by 
means of the boosting multi-classifier method, which allows for 
increasing the accuracy of the classifier. The methodology 
followed by the boosting to build the multi-classifier is based 
on the assignment of weights to training samples. The higher 
the weight of a sample, the higher its influence in the classifier. 
After each tree construction, the vector of weights is adjusted to 
show the model performance. In this way, samples which are 
erroneously classified increase their weights, whereas the 
weights of correctly classified samples decrease. Thus, the 
model obtained in the next iteration will give more relevance to 
the samples erroneously classified in the previous step 
(Hernandez-Orallo et al., 2004). After the construction of the 
decision tree set, the class to each object is assigned considering 
the estimated error made in the construction of each tree. 
 
3.4 Evaluation  

Classification assessment was based on the analysis of the 
confusion matrix (Congalton, 1991), by comparing the class 
assigned to each evaluation sample with the information 
contained in the reference database. The overall accuracies of 
the classifications were computed, as well as the producer and 
user accuracies for each class (which respectively reveal the 
errors of omission and commission). 
 
Since the area of study was not very large, and a representative 
set of testing data was needed to ensure a correct evaluation, the 
leave-one-out cross-validation technique was used. This method 
is based on using a single observation from the original sample 
as the validation data, and the remaining observations as the 
training data. This is repeated such that each observation in the 
sample is used once as the validation data. 
 
Due to the high number of parameters defined, some features 
are probably redundant in terms of efficient description of the 
objects used in our study. The inclusion of these parameters can 
introduce noise in the classification. Therefore a study of the 
relationships between the features and their contribution to the 
classification accuracy has been performed. Statistical linear 
discriminant analysis has been used to determine the 

significance of the features for the particular classification 
problem and for each specific application. 
 
 

4. RESULTS AND DISCUSSION 

Figure 6 shows the evolution of the predicted overall and per-
clase accuracies of the classification as new descriptive features 
are included in the linear discriminant model, considering the 
different aggregation of features. When spectral, texture and 
structural features are used, the main accuracy improvement is 
produced considering the mean of band 5 (Red), the contrast 
feature of GLCM, and the mean value of band 6 (Red-Edge). 
Afterwards, the predicted overall accuracy is slowly increasing 
as new variables as included in the discriminant model. These 
25 initial features included –i.e. the most discriminant– 
combine several spectral attributes representing statistics 
derived from all the spectral bands of the WorldView-2 sensor, 
with a number of texture and structural features computed from 
the panchromatic band. Graphs show that the combination of 
descriptive features from different nature allows for a faster 
increment of the predicted overall classification accuracy. 
 
Analyzing the evolution of the accuracy for each independent 
class when spectral, texture and structural features are used, the 
classes Urban, Shrublands and Tree orchards present high 
accuracy values (around or higher than 80%) with the inclusion 
of the first variable into the model. Forest and Irrigated crops 
classes start with 50% of accuracy, but as following features are 
added into the model their accuracy values increase. Sparse 
vegetation crops class is predicted to present a very low 
accuracy using the two more discriminant features, but when the 
feature mean of the band 6 (Red Edge) is used, its predicted 
accuracy value remarkably growths up to 90%. This situation is 
given for all the descriptive feature aggregation cases. The class 
Arable land is the one that requires the highest number of 
descriptive features to reach its maximum predicted accuracy. 
 
The overall classification accuracies results as the different 
combinations of descriptive features are included in the 
classification are shown in Table 1. In addition, user and 
producer accuracies for each class considered are presented in 
graphs in Figure 7. The complete confusion matrices (Table 2, 
Table 3, and Table 4) of the classification have been appended 
at the end of this document. 
 
 

Table 1.  Overall classification accuracies as the different 
combinations of descriptive features are used. 

 

Features Overall accuracy 

Spectral features 84.0 

Spectral and texture features 87.2 

Spectral, texture and structural features 89.0 

 
 
When only spectral features are employed an overall accuracy 
of 84% is obtained, but a significantly low producer accuracy 
value is obtained for Tree orchards class. This class presents a 
high confusion degree with Forest, Shrublands and Sparse 
vegetation crops classes. This is produced due to Tree orchards 
plots often present small dimensions and mixed land uses. 
Forest and Shrublands classes are frequently confused in the 
classification due to their spectral similarities. In the same 
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 Predicted overall accuracy Per-class predicted accuracy 

sense, Sparse vegetation crops and Irrigated crops also present 
a notable degree of confusion in their class assignation. (see 
Table 2). 
 
The combination of spectral and texture features produces a 
increase of the overall classification accuracy up to 87.2%, 
mainly caused for the noticeable improvement in the 
classification of Tree orchards class. As a result of this 
improvement, Forest and Shrublands user and producer 
accuracies present slightly increments (see Table 3). 

 
When structural features are also included in the classification 
process, the producer and user accuracies show modest 
improvements for all classes (see Table 4). As a result, the 
overall classification accuracy reaches up to 89%. 
 
Figure 8 graphically shows some examples of the result of the 
object-based classification using spectral, texture and structural 
descriptive features derived from WorldView-2 for the study 
area. 
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a. Producer accuracy 

 
b. User accuracy 

Legend: 

 
 

Figure 7.  Producer and user accuracies for defined classes as 
different combinations of descriptive features are used in 

classification. 
 
 

5. CONCLUSIONS 

The use of WorldView-2 band 6, the Red Edge band, clearly 
improves the classification of agricultural vegetation classes, 
being one of the most efficient features to differentiate between 
these land cover classes, as shown by the forward stepwise 
discriminant analysis results. Considering that the area of study 
presented a combination of vegetation and non vegetation 
classes, the complete set of spectral bands provide a variety of 
spectral information, increasing the overall accuracy of the 
classification for the seven-class problem proposed. 
 
The texture and structural features extracted from the 
panchromatic band in a per-parcel basis provide a very 
interesting synergy with the spectral information to classify the 
cartographic units. The kind of information they add is 
complementary to the spectral response, transforming the 
problem of internal variability in an advantage to better 
characterize parcels. This is not only due to the very high spatial 
resolution of the panchromatic image, but also to the 11 bits 
radiometric resolution, that increases the sensitivity of the 
variables computed and the contrast of the information 
captured. 
 
The case studied is representative of many current projects of 
LULC database creation and updating, that is why the good 
results obtained, close to 90% of overall accuracy, allow us to 
be optimistic for the use of these new available images in 

updating existing thematic databases and creating new ones. 
The combination of the high spectral, spatial and radiometric 
resolutions of the data, and the exhaustive extraction of 
information using object-oriented techniques and a multi-
approach based on spectral, texture and structural features, 
provide a very promising scenario for their practical application 
in LULC mapping, and to progressively introduce automated 
processing methods at production levels in this very current 
remote sensing field of applications.  
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Table 2. Confusion matrix of classification when spectral features are used in the classification. 
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Urban 136  2  1 1  140 97.1 

Forest  175 10 34   1 220 79.5 

Tree orchards 1 1 57 5 6 3 1 74 77.0 

Shrublands  40 20 229 1   290 79.0 
Sparse vegetation 

crops 
1  13  109 5 14 142 76.8 

Arable lands 2  5  7 172  186 92.5 

I r r igated crops  1 2  11  106 120 88.3 

Total 140 217 109 268 135 181 122 1172   
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Producer  accuracy 97.1 80.6 52.3 85.4 80.7 95.0 86.9   84.0 

 
 

Table 3. Confusion matrix of classification when spectral and texture features are used in the classification. 
 

 Reference 

 

U
rb

an
 

F
or

es
t 

T
re

e 
or

ch
ar

ds
 

Sh
ru

bl
an

ds
 

Sp
ar

se
 

ve
ge

ta
ti

on
 

cr
op

s 

A
ra

bl
e 

la
nd

s 

Ir
ri

ga
te

d 
cr

op
s 

T
ot

al
 

U
se

r 
ac

cu
ra

cy
 

Urban 135  4  1 3  143 94.4 
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Arable lands 3  2  11 170  186 91.4 

I r r igated crops  1   11  106 118 89.8 
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Producer  accuracy 96.4 86.6 71.6 88.1 80.7 93.9 86.9   87.2 

 
 

Table 4. Confusion matrix of classification when spectral, texture and structural features are used in the classification. 
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Producer  accuracy 95.7 89.4 72.5 90.7 85.9 95.6 85.2   89.0 

 
 

 


