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ABSTRACT 
 
The extraction of numeric features to characterize textures on images takes special relevance in certain satellite and 
aerial images classification processes. The wide range of the methodological approaches used and their applications 
in the earth observation (i.e., vegetation analysis, urban distribution and growing, landscape analysis, etc.) makes 
difficult the appropriate selection of the method in each particular case. In this work, several texture analysis 
techniques were evaluated: statistical features extracted from the grey level co-ocurrence matrix, methods based on 
energy filters and the edgeness factor, and the most recent based on the wavelets decomposition theory. In addition, 
different methodological parameters were tested, the most relevant being the neighbourhood size chosen for the 
determination of the texture features, as well as the distance between pixels and the number of grey levels used. 
The wavelets based methods offer a wide range of options, specially regarding the type of mother wavelets used, or if 
the feature extraction is made from images that result from the standard decomposition or from the decomposition 
and further reconstruction using the inverse transform. Several types of mother wavelets and both decomposition 
options were tested. One of the best advantages of this methods is that multiresolution analysis allows the 
combination of features from different levels of resolution. 
The evaluation was carried out using a mosaic of real images, with the goal of discriminating between different types 
of crops. The results show that the combination of the original and wavelet features together yields a better 
performance when the appropriate wavelet is chosen. The wavelets with highger support, such as the Coif-24, 
generated better results, and most of the texture information of the tested vegetation classes is contained in the lower 
levels of decomposition. 
 
1. INTRODUCTION 
 
Texture analysis methods have been used with positive 
results in many remote sensing applications, such as 
mapping and analysis of urban expansion, classification 
of forests, characterization of vegetation to study 
regeneration processes, or landscape analysis. The 
texture of an image is related to the distribution of grey 
levels in the image, so we can consider microtextures, 
when a small neighbourhood is analysed for the 
distribution of values, or macrotextures, when the 
analysed area is larger. 
 The features used to describe the texture can be 
obtained by several methods. The most traditional are the 
statistical approaches, which are based on the 
measurement of the occurrences of each grey level value 
in a particular neighbourhood, known as first-order 
statistics, or on the coocurrences of the different grey 
levels between two pixels of the neighbourhood, as 
described by Haralick et al. (1973), and called second-
order statistics. Other approaches are based upon 
filtering the image and then computing the energy for 

each pixel or for each pixel neighbourhood (Laws), or by 
computing the edgeness of a region by applying gradient 
filters. Autocorrelation measures, Fourier transform 
based features (), Gabor filters banks (Turner, 1986), 
Gauss-Markov random fields (Kashyap et al., 1982), or 
fractals models (Pentland, 1984), among others, are also 
techniques that have been used to characterize textures in 
different applications. 
 Most recently, the development of the theory of 
wavelets has supposed the beginning of the application 
of this technique in order to improve the results of 
texture classification processes. The use of a pyramid-
structured wavelet transform for texture analysis was 
first suggested by Mallat (1989). Since the texture of an 
image is a function of the scale, an advantage of wavelet 
decomposition is that provides a unified framework for 
multiscale texture analysis. Due to the wide range of 
possibilities and variations that wavelet decomposition 
offers, these studies have been usually focused on 
specific methodologies. Thus, for instance, Chang and 



Kuo (1993) used wavelet packets, and Unser (1995) a 
variation of the discrete and overcomplete wavelet 
decomposition. In addition, some comparative studies 
have been done, testing different combinations of 
internal parameters of texture analysis methods based on 
the wavelet transform (Fatemi-Ghomi et al., 1996), or 
comparing more traditional filtering approaches with 
some variations of wavelet based methods (Randen and 
Husoy, 1999). In all cases, the testing data sets used were 
composed of standard images, usually obtained from the 
Brodatz database (Brodatz, 1966), which is valid for 
comparison purposes, but particular real problems often 
render unequal performances, so they need to be 
specifically tested. In fact, the results obtained do not 
lead to an optimum methodology or a unique 
combination of parameters to be used. 

The wavelet transform decomposes the original 
image into a low-resolution image and several detail 
images. The low-resolution images are obtained by 
iteratively low-pass filtering the original image, and the 
detail images contain the information lost in the process. 
In general, the energy and variance of the detail images 
are the most common features extracted for texture 
classification. However, Van de Vower et al (1999) used, 
as texture features, histogram and coocurrence signatures 
computed from the same detail images. They noticed that 
the results obtained with the first-order set (histogram) 
and with the second-order set (coocurrence) of features 
were different depending on the specific class 
considered. This result reinforces the former statement 
that the method, texture features and parameters used 
should be specifically chosen for each application or 
group of applications. 

The texture of an image becomes an important 
propertie for the classification of vegetation units. On 
one side, it provides spatial information about the density 
and distribution of spontaneous vegetation, useful in 
forestry applications such as classification of landscape 
units in forested environments (Marceau et al., 1994), or 
determination of forest canopy densities for regeneration 
studies (Ruiz and Fdez.-Sarría, 2000). In addition, it 
provides information about the spatial arrangement of 
plants and trees in orchards for agricultural applications 
like crop classification, using high spatial resolution 
images as initial data for the extraction of texture 
features. 

In this paper, we evaluate three main groups of 
texture analysis methods (statistical, filtering and 
wavelet based) to discriminate agricultural landscapes 
using high resolution images from central Spain. The 
experiments are focused on testing the variations of 
several parameters related with texture analysis from 
wavelet decomposition, like the window size, the type of 

mother wavelet used, the influence of the decomposition 
level, the convenience to work with the decomposed 
detail images or with the reconstructed ones, or the 
selection of the most discriminant features. The 
classification results obtained from the different 
variations of the wavelet parameters are compared to the 
results obtained from the best statistical and filtering 
features. 

The classification of images by textures is always 
limited by the edge effect, or the high missclassification 
rate produced in the transition areas between classes, due 
to the fact that the classification of each pixel is 
determined by the values of its neighbourhood, so the 
pixels from the border areas will be affected by the 
pixels values of the adjacent classes. The effect will 
increase when larger window sizes are used to compute 
the texture features. In this sense, all of the classification 
results should be referred to the internal and external 
areas of the texture classes (Ruiz et al., 2001, Ferro and 
Warner, 2002). 
 
2. METHODS 
 
In this section we will describe the experimental 
procedure followed for the evaluation of different texture 
methods for the characterization of vegetation. First, we 
will explain the image data used and the texture classes 
defined. In the next three sections, we will describe the 
feature extraction methods used: grey levels coocurrence 
matrix features, filtering, and wavelet decomposition 
analysis. Finally, a description and discussion of the 
experimental tests is made attending to the different 
parameters considered, as well as the classification 
process used to obtain the final results. 
 
2.1. Experimental data 
 
The image data used for the study were extracted from a 
series of aerial photographs from a large region of 
central Spain, dominated by a diverse agricultural 
landscape including extensive and intensive crops, 
sometimes combined with disperse oak trees forming 
dehesas. Some urban areas were included to increase the 
diversity in the classification problem. 
 The initial aerial photographs, with an approximate 
scale of 1:30.000, were digitised to obtain 2 m. spatial 
resolution images. Then, several areas were extracted to 
form a mosaic image with the criterium of preserving a 
high variety of significant texture classes and reducing 
the amount of data to decrease the computing time on the 
tests. The final mosaic was composed of six subimages 
as shown in figure 1. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Mosaic image used for the texture analysis tests. 
 
A total of 12 texture classes were defined, 6 of them may 
be considered as fine textures: Vineyards (V); Non-
Harvested Cereal (CN); Harvested Cereal (CC); Alfalfa 
(A); Harvested Alfalfa (AC); and Maize (M). The other 6 
correspond to coarse textures: Vineyards combined with 
Olive trees (VO); Olive trees (O); Dehesa combined with 
Cereal (DC); High density Dehesa (DA); Low density 
Dehesa (DB); and Urban areas (U) (figure 2). 
 
 
 
 
 
 
 
 
 
Figure 2. Image samples of the 12 texture classes. Fine textures 
in upper row (from left to right): V, CN, CC, A, AC and M. 
Coarse textures in lower row (from left to right): VO, O, DC, 
DA, DB and U. 
 
The extraction of texture features from the mosaic image 
was accomplished using three different methods: 
features derived from the grey level coocurrence matrix, 
energy filters, and wavelet decomposition based features. 
 
2.2. Coocurrence features 
 
These features are based on the computation of the grey 
level coocurrence matrix (GLCM) in the neighbourhood 
of each pixel. A generic element of this matrix, p(i,j), 
represents the relative frequency in which two grey 
levels, i and j, ocurr in that neighbourhood between two 
pixels separated a distance d in a given direction θ:  
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where Ng is the number of grey levels. The 
neighbourhood is defined by the window size, which is 
an important parameter to be considered. Since the 
defined texture classes do not follow any particular 
orientation, the results of four directions were averaged 
for this test. After the results obtained in former 
experiments (Ruiz, 1998 and 2000), the distance between 
pixels (d) used was always 1 pixel. 
 A total of 8 texture features were initially computed 
from the GLCM (Haralick et al., 1973): 
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measures the homogeneity, with high values when the 
spatial distribution of the grey levels is almost constant. 
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is a measure of the randomness of the intensity 
distribution. 
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is related to the spatial frequency of the neighbourhood. 
High values of contrast are indicative of high grey level 
values off the principal diagonal of the matrix. 
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provides information about the overall intensity level in 
the neighbourhood. 
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is a measure of heterogeneity, with higher values when 
the grey levels differ from the mean. 
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is inversely related to the contrast. 
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is a measure of local homogeneity. Finally, if the product 
moment is normalized (divided) with respect to the 
variance, the correlation is obtained, which represents 
the eigth coocurrence feature computed. 
  
2.3. Filters 
 
The filtering approaches are based on the application of 
convolutions to the original image and then computing 
some basic indices, such as energy, over the 
neighbourhood of each pixel. 
 The textural energy features are based on the 
convolution of  the initial image I with a variety of 
kernels g1, g2,...,gN, yielding N new images Jn = I * gn (n 
= 1,...,N). Each filter is designed to enhance a different 
texture property on the image. Two sizes of filters were 
used, 5x5 and 7x7, considering that they were the most 
appropriate for the type of elements present in our 
texture classes. 
 We used 6 filters (figure 3) proposed by Laws 
(1985): Level (L), that gives information of the average 
grey level in the neighbourhood; Gradient (E) is and 
edge enhancing filter; Shape (S) enhances certain shapes 
on the grey level dimension; Wave (W); Ripple (R), and 
Oscillation (O), that enhance different waving shapes on 
the image. In addition, the Laplacian of a Gaussian filter 
(LoG) was also computed. 
 
 
 
 
 
 
 
 
Figure 3. 1D representation of the 7x7 and 5x5 filters used on 
the tests (Laws, 1985).  
 

A problem that arises with this approach is the 
introduction of significant errors along the boundaries 

between different textures in the image, formerly called 
the edge effect. It might be the case of obtaining energy 
values, in the areas located on the boundaries, that are 
closer to a third texture than to the ones included in the 7 
x 7 window, with the subsequent error in classification. 
To reduce this effect, a new level of processing was 
applied , as proposed by Hsiao and Sawchuk (1989): for 
each pixel on the textural energy image Jn, the mean and 
variance of the four neighbourhoods for which the pixel 
is the corner are computed, and the new pixel takes the 
value of the mean of the quadrant that has the smallest 
variance (figure 4). 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Diagram that represents the further processing level on 
the energy features to reduce the edge effect. 
 

Another texture feature computed that can be 
included into the filtering methods is the edgeness, based 
on the idea of Sutton and Hall (1972), in which texture is 
conceived in terms of edgeness per unit area and 
represented by the gradient (the sum of the absolute 
value of the differences between neighbouring pixels) as 
a function of the distance between the pixels. For a given 
distance d (tested as a variable texture parameter) and 
subimage I, defined over a neighbourhood N, the 
edgeness is computed with the following expression: 
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where g(i,j,d) represents the edgeness per unit area for a 
generic pixel (i,j) in the image, and d is a variable 
parameter to be studied for each particular group of 
textures. 
 
2.4. Wavelet based texture analysis 
 
A wavelet is a scaled and translated version of an 
elemental function called a mother wavelet 

5 x 5  
[ 1 4 6 4 1  ]

[ -1 -2 0 2 1  ]

[ -1 0 2 0 -1  ]

[ -1 2 0 -2 1  ]

[ 1 -4 6 -4 1  ]

[      ]

 

7 x 7 
L = [ 1 6 15 20 15 6 1 ] 

E = [ -1 -4 -5 0 5 4 1 ] 

S = [ -1 -2 1 4 1 -2 -1 ] 

W = [ -1 0 3 0 -3 0 1 ] 

R = [ 1 -2 -1 4 -1 -2 1 ] 

O = [ -1 6 -15 20 -15 6 -1 ] 

 



  

where s is the scale parameter and u the translation 
parameter. The wavelet decomposition of a function can 
be computed by applying each of these wavelets to the 
function itself 

 

In practice, the extension to a 2-D discrete function 
is usually performed by means of a product of 1-D low-
pass and high-pass filters (Walker, 1999). The original 
image is thus decomposed into a set of subimages at 
several scales, some of them contain the averages of the 
original image at a particular scale, and the other 
subimages represent the details. Since most relevant 
texture information is removed by iteratively low-pass 
filtering, the average images are not usually considered 
to obtain texture features (Van de Wouver, 1999).  

The technique used for the application of a discrete 
wavelet transform consists of the convolution of the 
digital image with a smoothing filter (scaling) and a 
band-pass filter (wavelets) along two orthogonal 
directions. The combination of these two filters along the 
vertical and horizontal directions renders four new 
output images for each level of decomposition, denoted 
by a, h, v, and d. The first one represents the average and 
the rest represent the first-order horizontal, vertical and 
diagonal details, respectively. It is important to mention 
that the wavelet decomposition entails the downsampling 
of the image by a factor of two, so each level of 
decomposition represents a lower scale or spatial 
resolution than the original image. 

The application of the inverse transform of each 
output detail image produces a reconstructed version of 
the horizontal, vertical and diagonal details, denoted by 
H, V, and D, that contain high frequency information on 
different scales depending on the level of decomposition 
of the detail images. The reconstruction process, named 
multiresolution analysis, entails the upsampling of the 
images to the original size (figure 5). Considering that at 
each level of decomposition we are representing a down-
scaled version of the image, the original image may be 
understood as a 0-level image, containing information at 
the original scale. This is an important aspect because 
the texture is a scale-dependent property, and each 
particular texture class usually has an optimum scale or 
resolution level for representation and feature extraction. 

Once the decomposed and reconstructed images of 
the details were obtained, several texture features were 
computed for every output image. The features were 
selected among the statistical and filter based texture 
variables proposed on sections 2.2 and 2.3, on the basis 
of a separability criterium.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Detail of the original image before and after the 
respective three levels of wavelet decomposition and further 
reconstruction using only the detail components (V, H and D). 
The mother wavelet used is the Daubechies-4. 
 
2.5. Experimental procedure 
 
 An important issue in texture analysis, especially 
when the wavelet decomposition method is used, is the 
selection of the most appropriate set of methodological 
parameters for each specific problem of texture 
classification. In this study, different variations of the 
following parameters were tested: 

- Window size, or the neighbourhood to be considered 
to compute the values of the texture features for 
each pixel. 

- The texture features that provide a better 
discrimination between classes. The selection was 
made between 8 statistical and 7 filtering features, 
as described above. 
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- Type of mother wavelet used. Six different wavelets 
were tested: Haar, Daubechies 4 and 8, Coiflets 6, 
12 and 24. 

- Influence of the wavelet decomposition level. Three 
levels were tested. 

- Whether to use the decomposed or the 
reconstructed detail images to compute the texture 
features. 

- Whether to use the independent detail images or the 
sum of details (H+V+D) for each level of 
decomposition. 

Aditional parameters, such as the distance between 
pixels (d) to compute the coocurrence matrix or the 
edgeness, and the number of grey levels used, were 
studied in previous works for similar classification 
problems (Ruiz, 1998). 

A pre-selection of two parameters, the influence of 
the decomposition level and the use of independent 
details or the sum of the details, was made by means of a 
statistical separability analysis using the Jeffries-
Matusita distance. The rest of the parameters were 
directly evaluated by means of the classification process. 

The classification method used to assign a texture 
class to each pixel on the image was based on the 
Bayesian maximum likelihood rule. Three different 
sampling sets were defined: the first was used as the  
learning set to obtain the decision functions, the other 
two were testing sets, one to evaluate the errors on the 
internal areas of the different textures, and the last set 
was used to evaluate the errors within the boundaries 
between classes, which are particularly high in texture 
classifications, due to the edge effect. 

 
3. RESULTS AND DISCUSSION 

 
Attending to the classification results, the first 

conclusion that should be pointed is that the classes with 
finer texture (cereal, alfalfa, maize,...) have a lower 
producer’s classification accuracy on the external areas 
(boundaries between classes) than the classes with 
coarser textures (olive trees, dehesas, urban,...). 
Therefore, the default error in assigning classes to those 
pixels that are located on the borders of the texture areas 
is higher for finer textures, probably because the 
combination of two or more fine textures is more likely 
to be confused with heterogeneous or coarse textures, 
due to the higher dispersion of the texture signatures that 
the coarse textures naturally present. 

From the 15 different texture features computed, the 
best classification results were obtained using 6 of them: 
variance, contrast, inverse difference moment, 

correlation, edgeness and energy. A window size of 21 x 
21 pixels was selected taking into account to preliminary 
results and the type of classes, considering a trade-off 
between the classification accuracies of the internal and 
external areas. In general, the increase of the window 
size provides better results in internal areas and worse in 
external areas of the texture regions. 

The separability tests showed that the generation of 
texture features for each of the independent detail 
images in the wavelet decomposition process does not 
increase the overall separability distance between 
classes, but multiplies by 3 the number of variables to 
compute. Therefore, the final classification results were 
obtained by using the sum of the horizontal, vertical and 
diagonal detail images. 

In order to determine the influence of the wavelet 
decomposition level, the 6 most relevant features were 
computed for all the images derived from decomposition 
levels 1, 2 and 3, and for level 0 (original image without 
decomposition). A series of separability analysis were 
carried out to find the best 6 variables from a set of 
features from the 4 levels. The average results are shown 
on table 1, ordered by the percentage of time that a 
variable from a particular level was selected. About half 
of the times, the best variables were from level 0 
(without wavelet decomposition), and the relevance of 
the variables was progressively lower as the level 
increased. In addition, the overall accuracies of four 
classifications using the wavelet Daubechies-4, with 
features of levels 0, 1, 2 and 3 were 86.1%, 74.7%, 
57.0% and 46.2%, respectively. Therefore, in this case 
most of the texture information is included in the higher 
resolution levels. 

 
Table 1. Influence of the decomposition level of the wavelet 
transform, expressed as the percentage of variables from 
different levels included among the best discriminant features. 

Decomp. Level 0 1 2 3 

% of var. included 48% 24% 18% 10% 

 
Regarding the use of the decomposed or the 

reconstructed detail images to compute the texture 
features, two classifications were compared using the 
wavelet Daubechies-4. The overall accuracy was 65.7% 
when the decomposed images of the 3 levels were used, 
and 77.8% using the reconstructed ones.  

Finally, figures 6 and 7 show the overall accuracies 
of a series of classifications to compare the influence of 
the type of wavelet and the convenience to use features 
computed from the original image (level 0), from the 
wavelet transforms with three level of decomposition 



(levels 1+2+3), or from the combination of all of them 
(levels 0+1+2+3). 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 Figure 6 shows the results for the internal areas, 
without consideration for the edge effect. In those areas, 
the use of the original image always yields better results 
(86.1%) than the wavelet transform images. However, 
the combination of the original (level 0) and the wavelet 
features together produces a better performance when the 
appropriate wavelet is chosen. Thus, while the Haar 
wavelet has a relatively poor performance, the Coiflets 
work better, especially when the support is increased. 
The wavelet Coif-24 combined with the original image 
provide the best results of the tests (87.2%). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The same tendency is observed in the external areas 

(figure 7), those in which the edge effect makes the 
accuracy of the classification decrease sharply. The 
combination of the features from the original image with 
the wavelet features provides better results with all the 
types of wavelets tested, but specially with the Coif-24, 
where the classification accuracy for those areas is 
increased by 6.4% with respect to that obtained only 
from the original image. 

Figure 8 shows an example of the classified image 
used in the tests, where 12 texture classes were defined. 

     
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 
 
Texture classification of agricultural landscape images is 
a useful method to identify crops using traditional 
statistical features, though the edge effect inherent to 
these methods usually produces poor results on the 
boundaries between classes.  

The combination of these features with those 
obtained from wavelet decomposition of images on 
several levels may increase the accuracy of the 
classification when the mother wavelet used in the 
transformation is properly chosen. Most of the texture 
information is contained in the lower levels of 
decomposition, and the reconstructed images (H, V and 
D) applying the inverse wavelet transform seem to 
provide better results than the decomposed images (h, v, 
and d). 

In general, the wavelet approach provides a better 
performance for those areas that are on the boundaries 
between different textures. Therefore, the methods based 
on wavelets seem to reduce the edge effect of the 
classification. 

The type of wavelet used is an important parameter. 
In our tests, the wavelets with higher support, such as the 
Coif-24, generated better results. However, further 
experiments should be done, using a wide variety of 
wavelets, in order to select the most appropriate type for 
each application. 

 
REFERENCES 
 
Brodatz, P., 1966. Textures: A photographic album for 

artists and designers. Dover, New York. 

Results  internal areas

70

75

80

85

90

Haar Daub-4 Daub-8 Coif-6 Coif-12 Coif-24

Type of wavelet

O
ve

ra
l a

cc
u

ra
cy

 (
%

)

Level 0 Levels 0+1+2+3 Levels 1+2+3

Figure 6. Classification results for internal areas using 
different types of wavelets and 3 different sets of features 
(level 0 means original image). 
 

Results  external areas

25

30

35

40

45

50

Haar Daub-4 Daub-8 Coif-6 Coif-12 Coif-24
Type of wavelet

O
ve

ra
l a

cc
u

ra
cy

 (
%

)

Level 0 Levels 0+1+2+3 Levels 1+2+3

Figure 7. Classification results for external areas (edge 
effect) using different types of wavelets and 3 different sets 
of features (level 0 means original image). 

   
Figure 8. Classification of the mosaic image on figure 1 
in 12 agricultural classes using texture features. 
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