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ABSTRACT

The aim of this study was to analyze the variation on accuracy
and errors of aboveground biomass (AGB) and canopy base
height (CBH) estimates when modifying lidar full-waveform
(FW) pulse density, voxel size and regression methods. We
reduced randomly pulse density from 9 to 1 pulses.m? in
steps of 0.5 pulses.m™ in 36 plots. Afterwards, eight FW
metrics were computed for each pulse density, voxel size (i.e.
0.25, 0.5 and 1 m) and plot. These metrics were used as
explanatory variables, while AGB and CBH obtained from
field work were used as response variables in linear, square-
root-transformed, exponential and power regression models.
Results on CBH showed that power regression reduces pulse
density influence. AGB was however influenced by voxel
size, showing that it was more affected by pulse density
changes when using smaller voxel sizes. In addition, square-
root-transformed and power regressions performed better for
AGB and CBH, respectively.

Index Terms— lidar full-waveform, pulse density, forest
structure, aboveground biomass, canopy base height,
regression methods

1. INTRODUCTION

Characterizing forest stand variables is essential for forest
management and to better analyze ecosystem processes [11].
Several applications, such as harvesting, mapping carbon
balance and wildlife habitats [10] require information given
by forest stand variables.

These variables have traditionally been estimated on the
ground or using destructive methods, which are costly and
time consuming [12]. However, newer remote sensing
technologies, such as light detection and ranging (lidar), have
been successfully employed in the last decades instead of
traditional techniques. Lidar technology can easily be
collected over large areas and is capable of predicting
accurately forest stand variables [2]. This makes lidar data a
fundamental tool to map forest stand variables over large
areas.

Lidar full-waveform (FW) is capable of registering the
complete signal sent from the aircraft and intercepting the
objects present on the ground. These data are especially

useful in forested areas, providing more information from the
different vertical layers than discrete lidar [8].

Both discrete and FW have not a homogenous pulse
density over the flown area. Overlapped areas between
different flight stripes have higher pulse densities than other
areas. This makes that some areas are therefore more
exhaustively registered by the lidar sensor than others.
Consequently, these pulse density differences may affect
estimate of forest stand variables.

How pulse density changes affect discrete lidar metrics
and forest stand variables estimated from lidar metrics has
been analyzed in several studies. [7] observed that forest
stand variables model results were similar when reducing
pulse density from 8§ to 0.5 pulses.m™ in Northwestern Spain.
They also tested three different regression methods (linear,
exponential and power), performing better results the
exponential one. [9] obtained that prediction results of forest
stand variables were similar above low pulse densities (i.e. 1
pulse.m) in California USA. Coverage variables (i.e. canopy
cover, tree density and shrub cover) were more affected by
pulse density variation, while other variables (i.e. height,
diameter at breast height, shrub height and basal area) did not
differ much with pulse densities higher than 1. [13] analyzed
how plot size and pulse density affect estimates of forest
stand variables in Central Spain. They concluded that both
factors affected model results, however pulse densities had a
lower influence.

On the contrary, FW data has been less used and its
preprocessing differs from discrete lidar, and therefore it has
received less studies. An accepted preprocessing method to
extract metrics is voxelization. It consists of clustering lidar
return pulses into voxels (e.g. rectangular prisms), whose
value is the maximum amplitude of all the return pulses
contained in. Once voxelization is done, pseudo-vertical
waveforms are described by the voxel values of each vertical
column from the top to the ground [8]. Afterwards, FW
metrics are extracted from this pseudo-vertical waveform. [5]
analyzed the effect of pulse density variations on FW metrics
in Oregon (USA). They observed that the lower the density
was, the higher the number of voxels with null values. This
made that FW metrics measured in adjacent samples with
similar forest features but with different pulse density were
statistically different. In order to solve this, they increased the
voxel size to diminish the number of empty voxels. Apart



from FW metrics, changes on estimate of forest stand
variables for different pulse densities using FW have however
not been analyzed in the literature.

The aim of this paper is to analyze how aboveground
biomass (AGB) and canopy base height (CBH) are affected
by pulse density variations and voxel size using FW data, as
well as testing four regression methods (linear, square-root-
transformed, exponential and power) to estimate AGB and
CBH. In order to do this, FW metrics were measured in a set
of plots where pulse density was randomly diminished. In
addition, FW metrics were computed for three voxel sizes
(i.e. 0.25,0.5 and 1 m).

2. METHODS
2.1. Study area

The study area is located in Panther Creek (Oregon, USA)
(see Fig. 1), with a total area of 2,258 ha ranging from 100 to
700 m of altitude. The dominant species is Douglas-fir
(Pseudotsuga menziesii), and it is occasionally mixed with
other conifers. The tree height is variable due to harvesting,
being sometimes higher than 60 m.
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Fig. 1. Study area location and Douglas-fir dominated plots
(green-colored) in the study area (orange-colored).

2.2. Lidar FW and field work data

FW data was collected in July 2010 using a Leica ALS 60
sensor. Average flight altitude was 900 m registering data at
105 kHz and a scan angle of +15°, resulting a pulse density
>8 pulses.m?. FW data was registered in 256 bins with a
footprint size of 0.25 m and a temporal sample spacing of 2
ns (i.e. 0.3 m).

Regarding field work, a total of 84 circular plots with 16
m radius were measured. Within each plot, the dominant
species and every tree with a diameter at breast height greater
than 2.5 cm were registered. As a result, there were 47 plots
where Douglas-fir was dominant, and 37 with mixed species.
Afterwards, AGB and CBH were estimated using collected
field data and allometric equations described by [15].

2.3. Lidar data processing

In order to work with plots having the highest pulse densities,
we selected a representative subsample of 36 plots (Fig. 1).
These plots had Douglas-fir as dominant species and its pulse
density was higher than 9 pulses.m™, being then set as the
initial pulse density. Pulse density was randomly reduced
from 9 to 1 pulse.m™? every 0.5 pulses.m? for the 36 plots
from the subsample. The way we followed to select randomly
the pulses for each density was computing the number of
pulses required to obtain a density d within the plot area, and
then selecting them randomly.

Once the initial dataset was modified according to pulse
densities, we computed FW metrics, requiring voxelization.
In this study we chose three voxel sizes in XY dimensions:
0.25, 0.5 and 1 m, being the smallest size the footprint size;
and a size of 0.3 m in Z dimension according to the temporal
sample spacing.

For each of the eight metrics (i.e. HOME, WD, NP,
ROUGH, HTMR, VDR, RWE and FS, proposed by [6] and
further described by [3]) we computed its mean within each
plot. As a result, we obtained eight metrics for each plot and
pulse density.

2.4. Regression models

Before generating the regression models, a selection of
metrics was performed only for the highest pulse density (i.e.
9 pulses.m) and each regression methods (i.e. linear, square-
root-transformed, exponential and power). These selected
metrics were used for all the pulse densities in order to better
compare how it affects estimates without using different
explanatory variables. The process followed for the metric
selection was to compare the Akaike Information Criterion
(AIC) [1] of all the possible models with a maximum of three
FW metrics.

Once FW metrics were selected, we generated linear,
square-root-transformed (sqrt), exponential (exp) and power
regression models, as suggested by [4] and [7], for each pulse
density. Finally, regression models were evaluated by
comparing adjusted coefficient of determination (R?) and
root-mean-square error (RMSE), and using leave-one-out
cross-validation.

3. RESULTS

Fig. 2 shows R? values obtained in AGB and CBH estimates
for the different regression methods, pulse densities and
voxel sizes. Regarding AGB, 1 m has the highest and less
affected results by pulse density for all the regression
methods. In addition, sqrt regression is also unaffected by
pulse density at a lower voxel size (i.e. 0.5 m). Overall, sqrt
has the highest R2 values. On the other hand, R2 values from
CBH estimates stay steady until 1.5 pulses.m?, where they
suddenly drop for all voxel sizes, except for 0.25 m with
power and exponential regressions. For CBH estimates, the



power regression is more constant for all the voxel size than
the linear, sqrt and exp regressions.
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Fig. 2. Variation of R? values for AGB and CBH estimates
for the different regression models (Lin: linear, Sqrt: square-
root-transformed, Exp: exponential, Pow: power), pulse
densities and voxel sizes. Red- and blue-colored cells
represent the lowest and highest R2 values, respectively, for
each variable.

Table 1 shows RMSE mean and standard deviation obtained
from AGB and CBH estimates. Analyzing AGB results, the
smaller the voxel size, the bigger the RMSE and the more
variability. In addition, sqrt regression has the lowest RMSE.
Conversely, CBH has lower RMSE differences between
voxel sizes and less variable. Hence, CBH results do not
depend on voxel size. In this case, power regression has the
lowest RMSE. In general, the behavior of RMSE is
coincident with that of the R? values.

4. DISCUSSION

Interpreting the results obtained, the influence of pulse
density on AGB estimates depends on voxel size when pulse
density diminishes. The larger the voxel, the more stable R?
values are and the lower the RMSE. This is due to the fact
that it is more likely that larger voxels contain more

Table 1. Mean and standard deviation from RMSE for the
different test sets.

AGB (Mg.ha™) CBH (m)

Methods ) »sm 0.5m 1m  025m 05m  1m
Lineal 92.6 88.4 86.6 4.8 4.8 4.5
+2.9 +1.6 0.7 =£0.1 +0.2 +0.2
Sqrt 87.5 82.1 80.6 5.0 4.9 4.6
+3.2 +1.2 £1.2 £0.3 +0.3 £0.2
Exp 102.1 93.0 91.1 5.1 5.2 5.0
+11.1 3.7 £3.2 0.1 +0.1 =£0.1
97.4 87.2 824 4.6 4.7 4.5

Power

+4.0 +2.8 +1.1 +0.1 +0.1 +0.1

waveforms when pulse density is lower. However, small
voxels have more null values, varying FW metrics, and
therefore making AGB estimates less accurate. Although the
influence of pulse density related to regression methods is
similar, sqrt regression performs better results.

On the other hand, CBH estimate variation is more
affected by the regression methods, being the power and exp
regressions more constant for all the pulse densities (except
exp regression at 1 m). However, exp has the lowest results.
Linear and sqrt regressions are constant with fluctuations as
well, but for pulse densities higher than 1.5 pulse.m-2, where
values suddenly drop. In this case, there is a lack of pulses to
achieve an accurate estimate even for larger voxels.
Differences between voxel sizes are lower for CBH, as shown
in RMSE results, however, the voxel size of 1 m has slightly
higher R? values again due to the fact that sufficient pulse
density within the voxels is ensured.

AGB and CBH estimates are then differently affected by
regression methods, voxel size and pulse density. Forest stand
variables related to height are influenced by regression
methods, but less influenced by voxel size and pulse density.

Regarding pulse density variations, our results are
coherent with those reported by [7] and [9] with discrete lidar.
[7] observed a lower variation in precision for variables
related to height (i.e. mean and dominant height, AR? = 1.9-
2.7%) than for AGB (AR? = 5.8%) when pulse density was
reduced from 8 to 0.5 pulses.m™. [9] also concluded that
height variables were less affected than cover-related
variables.

Regarding regression methods, [4] also found that sqrt
performed better AGB estimates. On the contrary, [7] had
higher R2 values estimating the AGB with the exponential
regression. In our study, however, the exponential regression
reached the lowest results.

On the other hand, our results agree with those from [14]
using FW, in the sense that variables related to height are not
significantly influenced by the voxel size. Nevertheless,
analyzing the influence of both parameters together, voxel
size and pulse density, on forest stand estimates using FW
was not addressed previously.



In general, using FW, AGB is affected by a reduction of
pulse density in small voxels. On the contrary, CBH estimates
are not significantly affected by pulse densities higher than
1.5 pulses.m™, or when power regression is used. Therefore,
results show that pulse densities are not crucial to accurately
estimate CBH. However, voxel size must be adequately
increased to keep AGB precision when low pulse densities
are used.

5. CONCLUSIONS

The present study has shown how AGB and CBH
estimates using lidar FW vary when pulse density and voxel
size are modified. The results suggest that AGB predictions
are more affected by pulse density than CBH. However, R?
and RMSE values for AGB remain the same when larger
voxel size are used, reducing the number of empty voxels and
balancing the lower pulse densities. For AGB, the R? and
RMSE values are constant for large voxel sizes (>1 m), and
for CBH when the power regression is used or pulse densities
are higher than 1.5 pulses.m™. In addition, sqrt and power
performed slightly better results than the linear and
exponential regressions for AGB and CBH, respectively.
This means that, in practical terms, lower densities can be
used, reducing the cost on lidar data acquisition and allowing
for a wider area coverage. Further studies will be focused on
analyzing the effect of pulse density variation on FW metrics,
in order to reduce the side-lap effect [5], which is not
reflected on estimate results.
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