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Abstract— Riverine areas are of great importance for their 
high nature conservation and biodiversity value. These zones 
are also areas of high human activity, negatively affecting the 
ecosystem with the modification of riverbeds, construction of 
dams, or introduction of invasive species. In this sense, to 
achieve balance in the riverbed, it is essential to have periodic 
information on the area to be able to implement management 
plans. From photogrammetric RGB point clouds, our study 
conducted a classification of species using geometric and 
spectral features to classify the predominant species of a stretch 
of the river Palancia (Spain). These species were Arundo donax 
L., Tamarix gallica L., Pinus halepensis Mill., other riverine 
species, and ground. The classification was done applying the 
Random Forest algorithm, obtaining a mean cross-validation 
score of 82%, and individually by species a score of 88% for 
giant reed, 70% for French tamarisk, 82% for Aleppo pine, 92% 
for ground and 62% for other riverine species. The good results 
obtained show the feasibility of using digital aerial 
photogrammetry in unmanned aerial vehicle (UAV-DAP) for 
periodic monitoring of river species, improving the information 
provided to river administrators to implement management 
plans. 

Keywords— Point cloud classification, UAV-DAP, Random 
forest, Riverine species 

I. INTRODUCTION 

One of the most important ecosystems of the nature is the 
riverine, where the exchange between the aquatic systems of 
the rivers and the terrestrial systems of the shore takes place, 
being perfect habitat for a large number of species of flora and 
fauna [1]. The vegetation of these areas allows the fixation of 
CO2 as well as the soil, preventing soil erosion and keeping 
the geomorphology more stable [2], [3]. Nevertheless, this 
area is quite fragile due to human action, making necessary to 
find a balance between its ecological and economic functions 
[4], [5]. 

The most significant events in Mediterranean riverine 
areas are periods of torrential rainfall, which can cause 
flooding [6]. To avoid the consequences of flooding, it is 
necessary to have up-to-date information on the distribution 
of plant species in the river bed in order to plan pruning or 
thinning actions [7].   

Traditionally, flights by aircraft have been carried out to 
obtain orthophotographs and Light Detection and Ranging 
(LiDAR) data for the classification of plant species, but the 
emergence of UAVs in forestry has changed this paradigm. 
UAVs allow the capture of data with higher spatial, temporal, 
radiometric and spectral resolution, if they are equipped with 
appropriate cameras, using only photogrammetric techniques. 
In addition, the use of these techniques allows the obtention of 
three-dimensional structure of plant species, without the need 
of LiDAR data capture [8]–[10]. Some studies have 
demonstrated the ability of photogrammetric products to 
classify tree species [11], but these studies have not been 
applied to particularly complex areas such as riverine zones.  

Therefore, the aim of this project is the development of a 
new methodology allowing for the study of fluvial species 
using UAV-DAP. 

A. Study area 

The study area had an extension of 43.11 ha of the riverbed 
of the river Palancia, located in the province of Valencia, in 
the eastern of the Iberian Peninsula (Fig. 1). 

 
Fig. 1. Location of the study area, represented in aquamarine, with the 
Palancia’s thalweg in blue. 

 The Mediterranean climate of this area is characterised by 
dry and hot summers, mild winters, and variable autumns and 
springs, both in terms of temperature and rainfall. Spring and 
autumn accumulate the highest annual precipitation (500 
mm). These climatic conditions affect the fluvial regime, with 
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periods when the riverbed is practically dry and periods when 
the riverbed is overflowing. These factors mean that the 
dominant species in the stretch of river studied are shrubs, 
Tamarix gallica L. (French tamarisk) and the invasive species 
Arundo donax L. (giant reed). Regarding the tree structure, it 
is relevant the presence of individuals of Pinus halepensis 
Mill. (Aleppo pine) in the riverbanks. The fact that we are 
studying a riverside area makes it possible to find a great 
diversity of plant species, with the occasional individual of 
Acacia karroo Hayne (Karroothorn), Agave Americana L. 
(American aloe), Celtis australis L. (Mediterranean 
hackberry), Nerium oleander L. (Nerium), Nicotiana glauca 
Graham (tree tobacco), Opuntia maxima Mill. (prickly pear), 
Pistacia lentiscus L. (lentisk), Populus alba L. (silver poplar), 
Populus nigra L. (black poplar), Rhamnus lycioides L. 
(Mediterranean buckthorn), Ricinus communis L. (castor 
bean) and Tamarix africana Poir. (African tamarisk), being all 
of them are very sparsely represented in the study area. 

B. Data collection 

Fieldwork consisted of collecting photogrammetric data 
using an UAV and taking ground control points using a 
differential GPS. 

To cover the entire study area (43.11 ha), seven flights 
were carried out using an ATyges FV8 UAV (Fig. 2). The 
Atyges FV8 is an octocopter with a weight of 3.5 kg and a 
payload of 1.5 kg. Its flight time is up to 25 minutes, 
depending on meteorological conditions and payload. For this 
data collection, the ATyges FV8 was equipped with a Sony 
A5000 RGB camera of 20.1 MP of resolution. The sensor is a 
CMOS Exmor™ APS HD with a size of 23.2 × 15.4 mm, 
which has a diagonal of 28.21 mm.  

The flights were set up at an altitude of 120 m. with an 
average speed of 25 km/h, taking more than 1250 images. 

 
Fig. 2. ATyges FV8 UAV equipped with a camera Sony A5000. 

The position of the control points in the field was obtained 
using two differential GPS models, Topcon GR-5 and Leica 
Viva GS16. In this campaign, 262 Ground Control Points 
(GCPs) were taken randomly. 

II. METHODS

The methodology for carrying out the mapping of plant 
species is based on the classification of the photogrammetric 
point cloud. This methodology is divided into 3 sections: 
photogrammetric process, height normalisation, point 
classification of the point cloud, and validation. 

A. Photogrammetric process 

The photogrammetric process was carried out using 
Pix4D© software. The first step in this process is the creation 
of tie points based on the extraction and matching of 
keypoints, camera model optimization and geolocation of 
ground control points. After this process the point cloud is 
densified, creating additional tie points.  

B. Normalisation of heights 

The next step was to normalise the heights of the obtained 
point cloud. This normalisation was carried out using 
LASTools© software. This software performs the 
normalisation process in two steps. First, classifies the ground 
points, and subsequently creates a digital terrain model 
(DTM). The DTM is lowered to zero elevation to obtain the 
normalised heights. Once the heights were normalised, the 
points classified as ground were removed, obtaining a point 
cloud of 30 million of points for the whole area.  

C. Point cloud classification 

In this step, we classified the point cloud using the 
Random Forest algorithm. Random forest is an ensemble 
learning method for classification, based on the construction 
of different decision trees during training, being the most 
repeated class in the classification of the individual trees, the 
prediction of the model.  

In this study we defined five classes: “Arundo donax”, 
“Pinus pinaster” and “Tamarix africana” (the most 
representative species in the study area); the class “other 
riverine species”, which encompasses the rest of the species in 
the study area; “ground”, which includes the points that were 
not removed as ground in the height normalisation process. 

The features input to the model were the normalised height 
(Z), the red (R), green (G), blue (B), the normalised green-red 
difference index (NGRDI), the normalised green-blue 
difference index (NGBDI), and the normalised red-blue 
difference index (NBRDI) of each point in the point cloud. 

D. Validation 

To validate the results, cross-validation was applied on the 
fitted model. The cross-validation technique is based on 
dividing the data sample into subsets, training on one subset 
of the data, while validating on another subset. In this case the 
number of subsets was set at 10-fold, in the iterative process 
one of the subsets is used as test data and the rest (9) as training 
data. The result of this validation is the average obtained from 
the evaluation measures on the different subsets. 

III. RESULTS AND DISCUSSION 

The point cloud obtained after the photogrammetric 
process had more than 85 million of points, i.e.,197 points/m2. 
This point cloud had a root mean square error in the GCPs of 
0.015 m in the x-component, 0.013 m in the y-component and 
0.021 m in the z-component. This indicates that the use of the 
UAV-DAP technique is appropriate for riverside areas, where 
vegetation does not form a continuous mass, avoiding the 
existence of shaded areas and allowing the visualisation of 
points on the ground. 
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Fig. 3. Confusion matrix of the classification applying cross-validation 
with 10 folds in the random forest algorithm on the classes “Arundo donax”, 
“Tamarix africana”, “Pinus halepensis”, “other riverine” and “ground”. 

The results of the mean cross validation score by class can 
be seen in the Fig. 3, where a global mean cross-validation 
score of 0.82 among all classes is obtained. Based on the 
results, the use of perform oversampling over the training 
samples obtained good results, as previous studies have shown 
[12]. 

Analysing each class in detail, the class that is best 
explained by the model is the "ground" class with 0.88 recall, 
that is the ability of the classifier to find all the positive 
samples. This was due to the large spectral difference between 
this class and the others. The precision for this class was of 
0.85, the precision is the ability of the classifier not to label as 
positive a sample that is negative. The f1-score of this class 
was 0.86, the f1-score can be interpreted as a weighted 
average of the precision and recall.  

 The classes “Arundo donax” and “Pinus halepensis” 
obtained similar precision (0.85 and 0.84, respectively) and 
f1-score (0.86 and 0.83, respectively), but their recall values 
(0.88 and 0.82) indicate that the class “Pinus halepensis” has 
been classified more reliably, mainly because tree species had 
the greatest height of all the species in the study area.  

 The "Tamarix africana" class obtained the same values 
of recall, precision, and f1-score, 0.70. These values indicate 
that this class has also been classified correctly. Finally, the 
"other riverine species" class was the worst classified, 
predictably, with 0.62 recall, 0.64 precision and 0.63 f1-score. 
This is due to the diversity of classes that have been merged 
in this class, with different species, spectral responses, and 
geometries. 

 Fig. 4 shows the comparison between the normalised 
RGB point cloud and the classified point cloud. Visualising 
the classified point cloud can be observed that most of the 
riverbed is colonised by Arundo donax, this species is the 
majority species in the entire study area. The creation of a 
species map at centimetre resolution opens the possibility of 
implementing specific management plans for the elimination 
of this invasive species. Similarly, the image shows how the 

bridge in the lower left corner has been correctly classified as 
"ground". 

 

 
Fig. 4. Top: Oblique  display of the normalised RGB point cloud. Bottom: 
Oblique display of the classified point cloud with the classes “Arundo donax” 
(aquamarine), “Tamarix africana” (orange), “ground” (green), “Pinus 
halepensis” (blue), and “other riverine species” (yellow). 

IV. CONCLUSIONS 

This study showed that it is possible to classify riverine 
species from RGB images and the UAV-DAP technique, 
applying the Random Forest algorithm based on variables 
extracted from the point cloud. The proposed methodology 
can help to improve riverine zone management, allowing 
species maps to be obtained with high geometric and temporal 
accuracy at low cost. 

Riverside areas are ideal for the use of the UAV-DAP 
technique due to the high dispersion of vegetation, making it 
unnecessary to use data from other techniques, such as LiDAR 
to obtain ground points that allow us to obtain a quality DTM 
for height normalisation. Therefore, in areas with low-dense 
vegetation it is not necessary to use high-cost sensors for 
species classification. Future studies will explore the 
possibility of merging LiDAR point clouds with UAV-DAP 
data for the classification of dense forest areas. 

 In addition, a future idea derived from this work is the use 
of multispectral and hyperspectral cameras for the 
classification of a larger number of plant species, without the 
need to merge different plant species into a single class. The 
methodology proposed in this work can be easily transferred 
to other fields. 
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