User Guide Class3Dp 1.0

December 2022

The software tool *Class3Dp* has been created in the Geo-Environmental Cartography and Remote Sensing Group (CGAT) of the Department of Cartographic Engineering, Geodesy and Photogrammetry of the Universitat Politècnica de València (UPV), Spain. The financial support for its development has been provided by the grant BES-2017-081920 and the R&D&I projects CGL2016-80705-R and PID2020-117808RB-C21 funded by MCIN/AEI/10.13039/501100011033 and by "FSE Invierte en tu futuro".

http://cgat.webs.upv.es/software/

Authors:

Juan Pedro Carbonell Rivera

Research Technician {juacarri@upv.es}

Dr. Luis Ángel Ruiz Fernández

Professor at Universitat Politècnica de València {laruiz@cgf.upv.es} Dr. Javier Estornell Cremades Professor at Universitat Politècnica de València {jaescre@cgf.upv.es}

Content

Introduc	ction1	Ĺ
How to	use <i>Class3Dp</i> 1	l
Instal	lation, requirements and execution	l
Input	data1	l
Outpu	ıt data2	2
Graph	nical User Interface	2
1.	Samples	3
2.	RGB Classification	5
3.	MS Classification)
Softwar	re tips11	l
Execu	ution of several <i>Class3Dp</i> processes11	l
Error	output	l
Python	libraries used	2
License	2	2
Referen	nces12	2

Introduction

Class3Dp is a software tool developed for supervised classification of photogrammetric point clouds. It allows the selection of training samples and classification of point clouds according to different features and machine learning models. Point clouds obtained from photogrammetric algorithms (e.g., Structure from Motion) include spectral information recorded in the image acquisition process using RGB, multispectral or hyperspectral sensors. The software extracts spectral and geometric features from the point clouds to be used for point classification.

How to use *Class3Dp*

Installation, requirements and execution

Download *Class3Dp* from [http://cgat.webs.upv.es/software/], then unzip it into the selected directory. The software is distributed as a portable version. To execute *Class3Dp*, click on the file Class3Dp.exe and, automatically, the graphical user interface of the software will be displayed.

Input data

The input data required vary according to the processes the user wants to execute. Two possible input data are:

- Photogrammetric point cloud obtained from RGB images in ".las" format, versions 1.2 and 1.3.
- Photogrammetric point cloud obtained from multispectral images (.txt).

The use of different file formats depends on the bands contained in the point cloud. The ".las" format only supports 3 wavelengths, being mostly used by the red (R), green (G) and blue (B) bands. For classifying multispectral point clouds, the user must enter as input a .txt file containing the columns (Figure 1):

- X: Coordinate X.
- Y: Coordinate Y.
- Z: Coordinate Z.
- Blue: Blue band digital number stored in 8 or 16 bits.
- Green: Green band digital number stored in 8 or 16 bits.
- Red: Red band digital number stored in 8 or 16 bits.

- RedEdge: RedEdge band digital number stored in 8 or 16 bits.
- NIR: NIR band digital number stored in 8 or 16 bits.

Х	Y	Z	blue	green	red	RedEdge	NIR
649641.145	4746291.551	1521.079	3574.0	2376.0	2110.0	1656.0	959.0
649641.313	4746291.148	1521.091	3480.0	2282.0	2045.0	1589.0	935.0
649640.746	4746291.383	1521.083	3290.0	2185.0	1912.0	1548.0	908.0
649640.895	4746291.004	1521.093	3831.0	2722.0	2521.0	2148.0	1334.0
649640.629	4746291.117	1521.081	3525.0	2439.0	2123.0	1793.0	1083.0

Figure 1. Display of multispectral point cloud data in ".txt" format.

The delimiter value of entry "txt" files is the space. These files must not contain headers. "txt" is a standard output file format for photogrammetric software (e.g., Agisoft Metashape). Currently, with regard to the classification of multispectral point clouds, the software only allows the classification of multispectral point clouds composed of 5 bands (blue, green, red, red edge and near-infrared).

Output data

For point clouds in ".las" format, the classification result is stored in the "Classification" field of the input file. Whereas in the case of point clouds in ".txt" format, the result is stored in a new column of the input file, located last. The result of both classifications are integers, whose values are related to the order previously assigned in the training sample.

Graphical User Interface

The graphical user interface consists mainly of a menu bar and a toolbar. In the menu bar, options File and Help are available:

- File: allows loading or closing the point clouds to be classified.
- Help: provides some help to the user on how to use the software.

The toolbar is divided into 3 tabs Samples, RGB Classification and MS Classification:

- Samples: Selection of training samples from the input point cloud.
- RGB Classification: classification of an RGB point cloud.
- MS Classification: classification of a multispectral point cloud.

Class3Dp				×
e Help				
Samples RGB Classification MS Classif	fication			
View manipulation	The position of the camera segments corresponding to right mouse button) drag Shift to pan the viewpoint. point near the mouse curso	a viewpoint is indicated by a red b x, y and z axes. Perform LMB to rotate the viewpoint. Perfo Double dicking the LMB moves br.	l-green-blue cursor, with [LMB/RMB stands for left orm LMB drag while holo the look at position to a	1 / 1
Point selection	Hold Ctrl/Ctrl-Shift while LI selection. Hold Ctrl/Ctrl-Sh point from the current sele	MB dragging a box to add/remo ift while LMB dicking on a poin ction. Click the RMB to dear the	ove points to the current t to add/remove a single current selection.	t
Save selection	Press Ctrl+S to save a poir	nt cloud with the points selected		
	Key E Tacala baburan autho	Description		
	1 Look along the direction	ographic/perspective projection		
Hot keys	 Look along -y direction Look along -y direction 	, i		
	7 Look along -z direction	2		
	C Set look at position to	mean position of selected point	he	
Check the box if the point doud was conver	ted to 8 bit (default value 16 bits):			
	Open Viewer			
* It is neccesary to open a point cloud file b * LMB/RMB stands for left/right mouse butt	efore open the viewer. on.			
*If you are using a Mac, use 🔀 in place of (Ctrl.			
*Coordinates must be in ETRS89.				

Figure 2. Main window of the Class3Dp software.

1. Samples

In the "Samples" tab (Figure 2), there is a small box with instructions on how to control the 3D viewer. To start the viewer, the user must select a point cloud using "File / Open" from the menu bar. Clicking on the "Open" option will open a selection window, in which ".las" (RGB point clouds) or ".txt" (multispectral point clouds) files can be selected. After selecting a RGB point cloud, press the "Open Viewer" button, which is enabled once the point cloud is loaded. In the case of multispectral point clouds, a new window is shown, in which the user can select the channels to be displayed, as well as the enhance value, which multiplies the values of the digital levels of the points. The values of the loaded multispectral point cloud are displayed in (Figure 3). As in the case of RGB point clouds, the user must click on the "Open Viewer" button to view the point cloud.

	ntaining a color value i	in the file to display:					
Blue	 ✓ Enha 	ince 1					
Blue	~						
Blue	~						
st lines of the file:							
X	Y	Z	blue	green	red	RedEdge	NIR
650035.373	4745656.75	1558.527	255.0	628.0	498.0	1661.0	4761.0
650035.244	4745656.881	1558.275	261.0	621.0	534.0	1569.0	4541.0
650035.25	4745 <mark>6</mark> 56.751	1558.208	230.0	626.0	517.0	1562.0	4742.0
650035 296	4745656.969	1558.719	243.0	566.0	491.0	1231.0	4293.0
0000001200		1000	260.0	672.0	402.0	1427.0	4476.0

Figure 3. Multispectral point cloud channel selection window.

Once the "Open Viewer" button is pressed, the point cloud starts loading, which may take a few seconds depending on the size of the file. At the end of the loading process, the point cloud is displayed in the viewer (Figure 4).

Figure 4. Class3Dp software visualising a point cloud of 41.7 million points.

The controls for selecting training samples are detailed below (Table 1):

Table 1. Controls for handling the point cloud viewer.

View manipulation	The position of the camera viewpoint is indicated by a red-green-blue cursor, with segments corresponding to x, y and z axes. Perform LMB (LMB/RMB stands for left/right mouse button) drag to rotate the viewpoint. Perform LMB drag while hold Shift to pan the viewpoint. Double clicking the LMB moves the look at position to a point near the mouse cursor.
----------------------	---

Point selection	Hold Ctrl/Ctrl-Shift while LMB dragging a box to add/remove points to the current selection. Hold Ctrl/Ctrl-Shift while LMB clicking on a point to add/remove a single point from the current selection. Click the RMB to clear the current selection.
Save selection	Press Ctrl+S to save a point cloud with the points selected.
Hot keys	KeyDescription5Toggle between orthographic/perspective projection1Look along +y direction3Look along -x direction7Look along -z directionCSet look at position to mean position of selected points

For the classification of the point cloud, the training samples must be saved in separate files for each class. That is, there will be as many files as classes to be classified. Once the training samples of a class have been saved, the user must delete the selection (RMB), and continue with the selection of new samples.

The files containing the training samples must be in ".las" format in the case of classifying RGB point clouds, and in ".txt" format in the case of classifying multispectral point clouds.

Currently the *Class3Dp* point cloud viewer only supports point clouds in UTM (Universal Transverse Mercator) coordinate system.

2. RGB Classification

The "RGB Classification" tab (Figure 5) allows the user to perform the classification of a point cloud from training samples of different classes previously selected. First, the user must select the number of classes. Depending on the number of classes, different options will be enabled to select the paths where the ".las" files containing the training samples for each class are located. Similarly, the user will have to select the point cloud to be classified.

Five different machine learning methods are available for classification (Decision Tree (Breiman et al., 1984), Extra Trees (Geurts et al., 2006), MultiLayer Perceptron (Hinton, 1990), Gradient Boosting (Friedman, 2001) and Random Forest (Breiman, 2001)). These classification methods are obtained from the Sklearn library. In addition, a method called "Automatic selection" has been included. This last option performs an adjustment using the 5 different methods described above. Automatically, it chooses the model with the highest cross-validation score (Refaeilzadeh et al., 2009). During the execution of the classification, a console will appear with the status of the process.

Help		
Samples RGB Classification MS Classification		
	Select the number of classes:	~
ter path for the samples #1:		Browse
ter path for the samples #2:		Browse
er path for the samples #3:		Browse
er path for the samples #4:		Browse
er path for the samples #5:		Browse
er path for the samples #6:		Browse
er path for the samples #7:		Browse
er path for the samples #8:		Browse
er path for the samples #9;		Browse
er path for the cloud to classify:		Browse
ect the classification method;	Automatic selection	
eck the box to perform a hyperparameter tunning ins	tead of using default values (slower):	0
eck the box to save the model;		
eck the box to load a previous model:		
er path to save/load the model:		Browse
ection of variables:	Open "Variable Selection" window	
gress:	0%	 }
		Execute
		Cancel

Figure 5. "RGB Classification" tab window.

Within this window, a search can be performed for the best hyperparameters that match the classification method selected by the user, in case this box is not checked, default parameters are taken. The hyperparameters to be evaluated can be seen in Table 2

Table 2. Hyperparameters used in the models' fine-tuning.

Model Hy	perparameter #1	Hyperparameter #2	Hyperparameter #3	Hyperparameter #4
WIUUEI	(values)	(values)	(values)	(values)

Decision Tree Extra Trees Gradient Boosting	Maximum depth of the tree (5, 10, None)	Minimum number of samples required to split an internal node (2, 3, 5)	Minimum number of samples required to be at a leaf node (1, 2, 5)	-
Random Forest	Number of trees in the forest (200, 500)	Number of features to consider ('auto', 'sqrt', 'log2')	Maximum depth of the tree $(4, 5, 6, 7, 8)$	Function to measure the quality of a split ('gini', 'entropy')
MultiLayer Perceptron	Number of neurons in the ith hidden layer (50,50,50), (50,100,50), (100)	Activation ('tanh', 'relu')	Solver ('sgd', 'adam')	Alpha (0.0001, 0.05)

The calculated model can be saved by selecting the checkbox "Check the box to save the model". This allows to reuse the model later. The loading of a previously saved model is done in a similar way. For the correct loading of the model, the user must select the same features used to generate the model. To do this, use the window "Feature Selection", then the features can be selected and introduced into the model. The available features are shown in table 3.

Table 3. Features used in the RGB classification.

Туре	Name (Description)	Equation	Reference
Geometrical	Coordinate X of the point	Х	-
Geometrical	Coordinate Y of the point	Y	-
Geometrical	Height of the point	Ζ	-
Spectral	Blue value of the point	Blue	-
Spectral	Green value of the point	Green	-
Spectral	Red value of the point	Red	-
Spectral	BI (Brightness)	$\rho_{red} + \rho_{green} + \rho_{blue}$	(Fraser et al., 2017)
Spectral	CIVE (Color Index of Vegetation)	$\begin{array}{l} 0.441*\rho_{red}-0.881*\rho_{green}\\ +\ 0.385*\rho_{blue}\\ +\ 18.78745 \end{array}$	(Kataoka et al., 2003)
Spectral	EXG (Index Excess Green Minus Excess Red)	$(2* ho_{green}- ho_{red}- ho_{blue})-(1.4* ho_{red}- ho_{green})$	(Neto, 2004)
Spectral	ExG (Index Excess Green)	$(2 * \rho_{green} - \rho_{red} - \rho_{blue})$	(Woebbecke et al., 1995)
Spectral	GLI (Green Leaf Index)	$(2 * \rho_{green} - \rho_{red} - \rho_{blue})/(2 * \rho_{green} + \rho_{red} + \rho_{blue})$	(Vala & Baxi, 2013)
Spectral	GR (Green divided by red)	ρ_{green}/ρ_{red}	(Fraser et al., 2017)
Spectral	MGVRI (Modified Green- Red Vegetation Index)	$(\rho_{green}^{2} - \rho_{red}^{2})/(\rho_{green}^{2} + \rho_{red}^{2})$	(Barbosa et al., 2019)
Spectral	NBRDI (Normalised Blue- Red Difference Index)	$(\rho_{red} - \rho_{blue})/(\rho_{red} + \rho_{blue})$	(Carbonell-Rivera et al., 2020)
Spectral	NGBDI (Normalised Green- Blue Difference Index)	$(\rho_{green} - \rho_{blue})/(\rho_{green} + \rho_{blue})$	(Shimada et al., 2012)
Spectral	NGRDI (Normalised Green- Red Difference Index)	$(\rho_{green} - \rho_{red})/(\rho_{green} + \rho_{red})$	(Hunt et al., 2005)
Spectral	NormG (Normalized Greeness)	$\rho_{green}/(\rho_{green}+\rho_{red}+\rho_{blue})$	(Stricker et al., 2014)

Spectral	RGRI (Red Green Ratio Index)	ρ_{red}/ρ_{green}	(Gamon & Surfus, 1999)
Spectral	SAVI (Soil Adjusted Vegetation Index)	$(1.5 * (\rho_{green} - \rho_{red}))/(\rho_{green} + \rho_{red} + 0.5)$	(A. R. Huete, 1988)
Spectral	VARI (Visual Atmospheric Resistance Index)	$(\rho_{green} - \rho_{red})/(\rho_{green} + \rho_{red} - \rho_{blue})$	(Gitelson et al., 2002)
Spectral	vNDVI (Visible Normalized Difference Vegetation Index)	$0.5268 * \rho_{red}^{-0.1294} * \rho_{green}^{0.3389} \\ * \rho_{blue}^{-0.3118}$	(Costa et al., 2020)
Neighbourhood	Numbers (Number of neighbours)	n	-
Neighbourhood spectral	NGRDI_mean (Mean NGRDI of the point and its neighbouring points) NGRDI_std (Standard	$\overline{\text{NGRDI}}(S_p) = \frac{1}{n} \left(\sum_{i=1}^n \text{NGRDI}(S_{p,i}) \right)$	-
Neighbourhood spectral	deviation NGRDI of the point and its neighbouring points)	$\sqrt{\frac{(\sum_{i=1}^{n} (\text{NGRDI}(S_{p_i}) - \overline{\text{NGRDI}}(S_p))^2)}{n-1}}$	-
Neighbourhood Geometrical	Dist_mean (Mean distance of the point with its neighbouring points)	$\bar{d}(S_p, p) = \frac{1}{n} \left(\sum_{i=1}^n d(S_{p,i}, p) \right)$	-
Neighbourhood Geometrical	Dist_std (Standard deviation of the point with its neighbouring points)	$\sqrt{\frac{\left[\left(\sum_{i=1}^{n} \left(d\left(S_{p,i}, p\right) - \overline{d}\left(S_{p}, p\right)\right)^{2}\right)\right]/(n-1)}{n-1}}$	-
Neighbourhood geometrical	Z_mean (Mean height of the point and its neighbours)	$\bar{z}(S_p) = \frac{1}{n} \left(\sum_{i=1}^n (z(S_{p,i})) \right)$	-
Neighbourhood geometrical	Z_std (Standard deviation height of the point and its neighbours)	$\sqrt{\frac{(\sum_{i=1}^{n} (z(S_{p,i}) - \bar{z}(S_{p}))^{2})}{n-1}}$	-
Neighbourhood geometrical	Dif_Z (Maximum height of the neighbourhood minus minimum height of the neighbourhood)	$\max(z(S_p)) - \min(z(S_p))$	-
Neighbourhood geometrical	Z_Zmin (Height of the point minus neighbourhood minimum height)	$z(p) - \min(z(S_p))$	-
Neighbourhood geometrical	Zmax-Z (Maximum height of the neighbourhood minus height of the point)	$\max(z(S_p)) - z(p)$	-
Neighbourhood geometrical	Sum_ λ (Sum of eigenvalues)	$\lambda_1 + \lambda_2 + \lambda_3$	(Rusu, 2010)
Neighbourhood geometrical	Omnivariance	$\sqrt[3]{\lambda_1\cdot\lambda_2\cdot\lambda_3}$	(West et al., 2004)
Neighbourhood geometrical	Eigenentropy	$-\sum_{i=1}^{3}\lambda_i\cdot\ln(\lambda_1)$	(West et al., 2004)
Neighbourhood geometrical	Anisotropy	$(\lambda_1 - \lambda_3)/\lambda_1$	(West et al., 2004)
Neighbourhood geometrical	Planarity	$(\lambda_2 - \lambda_3)/\lambda_1$	(West et al., 2004)
Neighbourhood geometrical	Linearity	$(\lambda_1 - \lambda_2)/\lambda_1$	(West et al., 2004)
Neighbourhood geometrical	Surface Variation	$\lambda_3/(\lambda_1+\lambda_2+\lambda_3)$	(Rusu, 2010)
Neighbourhood	Sphericity	λ_3/λ_1	(West et al., 2004)
Neighbourhood geometrical	Verticality	1-nz	(Demantké et al., 2012)

Once the training samples are selected, the point cloud to classify is added, and the classification method and the features have been selected, the user can click on the "Execute" button and the classification process starts. During the execution, the user can visualize at any time information of the process being carried out (calculation of the variables, model adjustment or classification of the point cloud from the calculated model).

After determining the classification model, for the evaluation of the model, the mean cross-validation score and the cross-validation score of each fold are displayed. Likewise, the confusion matrix obtained from the evaluation of the learning samples in the adjusted model is shown. In addition, the permutation importance (Breiman, 2001) obtained by each feature in the classification is displayed. This information can be used for the user to perform a dimensional reduction.

If the process has been successfully completed a new window is displayed (Figure 6).

Figure 6. Process completion window.

3. MS Classification

The multispectral classification shows a very similar window as the RGB classification. The main differences are the use of ".txt" files in the point clouds and the selection of new features derived from the additional bands used in this format (NIR and Rededge). The features that can be calculated are shown in table 4.

Туре	Name (Description)	Equation	Reference
Geometrical	Coordinate X of the point	Х	_
Geometrical	Coordinate Y of the point	Y	-
Geometrical	Height of the point	Z	-
Spectral	Blue value of the point	Blue	-
Spectral	Green value of the point	Green	-
Spectral	Red value of the point	Red	-

Table 4. Features used in the multispectral classification.

Spectral Spectral	RedEdge value of the point	RedEdge	-
Spectral	ARVI (Atmospherically Resistant	$(\rho_{nir} - \rho_{rb})/(\rho_{nir} + \rho_{rb}), \rho_{rb} = \rho_{red} - \rho_{rb}$	- (Kaufman & Tanre,
Special	Vegetation Index)	$[\rho_{blue} - \rho_{red}/2]$	1992)
Spectral	BI (Brightness)	$ \rho_{green} + \rho_{red} + \rho_{blue} $	(Fraser et al., 2017)
Spectral	DVI (Differential Vegetation Index)	$ ho_{nir} - ho_{red}$	(Richardson & Wiegand, 1977)
Spectral	EVI (Enhanced Vegetation Index)	$[2.5 \cdot (\rho_{blue} - \rho_{red})] / [(\rho_{nir} + 6 \cdot \rho_{red} - 7.5 \cdot \rho_{blue} + 1)]$	(A. Huete et al., 1999)
Spectral	GNDVI (Green Normalised Difference Vegetation Index)	$(\rho_{nir} - \rho_{green})/(\rho_{nir} + \rho_{green})$	(Gitelson et al., 1996)
Spectral	GR (Green divided by red)	$ ho_{green}/ ho_{red}$	(Fraser et al., 2017)
Spectral	IPVI (Infrared Percentage Vegetation Index)	$\rho_{nir}/(\rho_{nir}+\rho_{green})$	(Ray et al., 1993)
Spectral	MSAVI (Modified Soil-Adjusted Vegetation Index)	$(2 \cdot \rho_{nir} + 1 - [(2 \cdot \rho_{nir} + 1)^2 - 8 + (\rho_{nir} - \rho_{red})]^{0.5})/2$	(Qi et al., 1994)
Spectral	MSR (Modified Simple Ratio Index)	$ ho_{red}/(ho_{nir}/ ho_{red})^{0.5}$	(Chen, 1996)
Spectral	NDVI (Normalised Difference Vegetation Index)	$(\rho_{nir} - \rho_{red})/(\rho_{nir} + \rho_{red})$	(Rouse et al., 1974)
Spectral	NBRDI (Normalised Blue-Red Difference Index)	$(\rho_{red} - \rho_{blue})/(\rho_{red} + \rho_{blue})$	(Carbonell-Rivera et al., 2020)
Spectral	NGBDI (Normalised Green-Blue Difference Index)	$(\rho_{green} - \rho_{blue})/(\rho_{green} + \rho_{blue})$	(Shimada et al., 2012)
Spectral	NGRDI (Normalised Green-Red Difference Index)	$(\rho_{green} - \rho_{red})/(\rho_{green} + \rho_{red})$	(Hunt et al., 2005)
Spectral	NormG (Normalised Greenness)	$\rho_{green}/(\rho_{green}+\rho_{red}+\rho_{blue})$	(Stricker et al., 2014)
Spectral	OSAVI (Optimised Soil Adjusted Vegetation Index)	$(\rho_{nir}-\rho_{red})/(\rho_{nir}+\rho_{red}+0.16)$	(Rondeaux et al., 1996)
Spectral	RDVI (Renormalised Difference Vegetation Index)	$(\rho_{nir}-\rho_{red})/(\rho_{nir}+\rho_{red})^{0.5}$	(Roujean & Breon, 1995)
Spectral	RGRI (Red Green Ratio Index)	ρ_{red}/ρ_{green}	(Gamon & Surfus, 1999)
Spectral	RVI (Ratio Vegetation Index)	ρ_{red}/ρ_{nir}	(Jordan, 1969)
Spectral	SARVI (Soil and Atmospherically Resistant Vegetation Index)	$[1.5 \cdot (\rho_{nir} - \rho_{rb})]/(\rho_{nir} + \rho_{red} + 0.5), \rho_{rb} = \rho_{red} - [\rho_{blue} - \rho_{red}/2]$	(A. R. Huete, 1988)
Spectral	SAVI (Soil Adjusted Vegetation Index)	$1.5\cdot(\rho_{nir}-\rho_{rb})/(\rho_{nir}+\rho_{red}+0.5)$	(A. R. Huete, 1988)
Spectral	SR (Simple Ration Vegetation Index)	ρ_{nir}/ρ_{red}	(Tucker, 1979)
Spectral	Ratio × Normalised Difference Vegetation Index)	$(\rho_{nir}{}^2 - \rho_{red})/(\rho_{nir} + \rho_{red}{}^2)$	(Gong et al., 2003)
Neighbourhood	Numbers (Number of neighbours)	n	-
Neighbourhood spectral	NDVI_mean (Mean NDVI of the point and its neighbouring points)	$\overline{NDVI}(S_p) = \frac{1}{n} \left(\sum_{i=1}^{N} NDVI(S_{p_i}) \right)$	-
Neighbourhood spectral	NDVI_std (Standard deviation NDVI of the point and its	$\frac{\left(\sum_{i=1}^{n} (NDVI(S_{p_i}) - \overline{NDVI}(S_p))^2\right)}{n-1}$	-
Neighbourhood geometrical	Dist_mean (Mean distance of the point with its neighbouring points)	$\bar{d}(S_p, p) = \frac{1}{n} \left(\sum_{i=1}^n d(S_{p,i}, p) \right)$	-
Neighbourhood geometrical	Dist_std (Standard deviation of the point with its neighbouring points)	$\sqrt{\frac{(\sum_{i=1}^{n} (d(S_{p,i}, p) - \overline{d}(S_{p}, p))^{2})}{n-1}}$	-

Neighbourhood geometrical	Z_mean (Mean height of the point and its neighbours)	$\bar{z}(S_p) = \frac{1}{n} \left(\sum_{i=1}^n (z(S_{p,i})) \right)$	-
Neighbourhood geometrical	Z_std (Standard deviation height of the point and its neighbours)	$\sqrt{\frac{(\sum_{i=1}^{n} (z(S_{p,i}) - \bar{z}(S_p))^2)}{n-1}}$	-
Neighbourhood geometrical	Dif_Z (Maximum height of the neighbourhood minus minimum height of the neighbourhood)	$\max(z(S_p)) - \min(z(S_p))$	-
Neighbourhood geometrical	Z_Zmin (Height of the point minus neighbourhood minimum height)	$z(p) - \min\left(z(S_p)\right)$	-
Neighbourhood geometrical	Zmax-Z (Maximum height of the neighbourhood minus height of the point)	$\max\bigl(z(\mathcal{S}_p)\bigr)-z(p)$	-
Neighbourhood geometrical	Sum_ λ (Sum of eigenvalues)	$\lambda_1 + \lambda_2 + \lambda_3$	(Rusu, 2010)
Neighbourhood geometrical	Omnivariance	$\sqrt[3]{\lambda_1 \cdot \lambda_2 \cdot \lambda_3}$	(West et al., 2004)
Neighbourhood geometrical	Eigenentropy	$-\sum_{i=1}^{3}\lambda_{i}\cdot\ln(\lambda_{1})$	(West et al., 2004)
Neighbourhood geometrical	Anisotropy	$(\lambda_1 - \lambda_3)/\lambda_1$	(West et al., 2004)
Neighbourhood	Planarity	$(\lambda_2 - \lambda_3)/\lambda_1$	(West et al., 2004)
Neighbourhood	Linearity	$(\lambda_1 - \lambda_2)/\lambda_1$	(West et al., 2004)
Neighbourhood	Surface Variation	$\lambda_3/(\lambda_1+\lambda_2+\lambda_3)$	(Rusu, 2010)
Neighbourhood	Sphericity	λ_3/λ_1	(West et al., 2004)
Neighbourhood geometrical	Verticality	1-nz	(Demantké et al., 2012)

Software tips

This manual is accompanied by a video tutorial in which an example of point cloud classification is visualized, performing a classification with two classes, bare ground points and vegetation. The point cloud used in this tutorial is attached to be used for software testing purposes.

Execution of several Class3Dp processes

If the user wants to execute several *Class3Dp* processes, run the Classes.exe file as many times as desired.

Error output

Any error raised while executing will be showed in the Log and/or saved in file "Filelog.log", located in the main directory of *Class3Dp*.

Python libraries used

All the python libraries used for the development of *Class3Dp* are:

- Joblib (https://pypi.org/project/joblib/)
- Keyboard (https://pypi.org/project/keyboard/)
- Laspy (https://pypi.org/project/laspy/)
- Logging (https://docs.python.org/3/library/logging/)
- numpy (https://pypi.org/project/numpy/)
- os (https://docs.python.org/3/library/os.html)
- pandas (https://pypi.org/project/pandas/)
- pptk (https://pypi.org/project/pptk/)
- PyQt5 (https://pypi.org/project/PyQt5/)
- Scipy (https://pypi.org/project/scipy/)
- Scikit-learn (https://scikit-learn.org/)
- sys (https://docs.python.org/3/library/sys.html)
- tkinter (https://docs.python.org/3/library/tkinter.html)
- traceback (https://docs.python.org/3/library/traceback.html)

License

This software is released under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). More information can be found in the license.md file that accompanies the software.

References

- Barbosa, B. D. S., Ferraz, G. A. S., Gonçalves, L. M., Marin, D. B., Maciel, D. T., Ferraz, P. F. P., & Rossi, G. (2019). RGB vegetation indices applied to grass monitoring: a qualitative analysis. *Agronomy Research*, 17(2), 349–357. https://doi.org/10.15159/AR.19.119
- Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32.
- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). *Classification and regression* trees. CRC press.
- Carbonell-Rivera, J. P., Estornell, J., Ruiz, L. A., Torralba, J., & Crespo-Peremarch, P. (2020). Classification of UAV-based photogrammetric point clouds of riverine species using machine learning algorithms: A case study in the Palancia river, Spain. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020*(B2), 659–666. https://doi.org/10.5194/ISPRS-ARCHIVES-XLIII-B2-2020-659-2020

- Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. *Canadian Journal of Remote Sensing*, 22(3), 229–242.
- Costa, L., Nunes, L., & Ampatzidis, Y. (2020). A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. *Computers and Electronics in Agriculture*, 172, 105334. https://doi.org/10.1016/J.COMPAG.2020.105334
- Demantké, J., Vallet, B., & Paparoditis, N. (2012). Streamed vertical rectangle detection in terrestrial laser scans for facade database production. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3*, 99–104. https://doi.org/10.5194/ISPRSANNALS-I-3-99-2012
- Fraser, R. H., van der Sluijs, J., & Hall, R. J. (2017). Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. *Remote* Sensing 2017, Vol. 9, Page 279, 9(3), 279. https://doi.org/10.3390/RS9030279
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/AOS/1013203451
- Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. *The New Phytologist*, 143(1), 105–117. https://doi.org/10.1046/J.1469-8137.1999.00424.X
- Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. *Machine Learning*, 63(1), 3–42.
- Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. *Remote Sensing of Environment*, 58(3), 289–298.
- Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. *Remote Sensing of Environment*, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
- Gong, P., Pu, R., Biging, G. S., & Larrieu, M. R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. *IEEE Transactions on Geoscience and Remote Sensing*, 41(6), 1355–1362.
- Hinton, G. (1990). Connectionist learning procedures. *Machine Learning*. https://www.sciencedirect.com/science/article/pii/B9780080510552500298
- Huete, A., Justice, C., & van Leeuwen, W. (1999). MODIS vegetation index (MOD13). *Algorithm Theoretical Basis Document*, 3(213), 295–309.
- Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). *Remote Sensing of Environment*, 25(3), 295–309.
- Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., Mcmurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. *Precision Agriculture*, 6(4), 359–378.
- Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. *Ecology*, 50(4), 663–666.
- Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. Proceedings 2003 IEEE/ASME International Conference on Advanced

13

Intelligent Mechatronics (AIM 2003), 2, b1079-b1083 vol.2. https://doi.org/10.1109/AIM.2003.1225492

- Kaufman, Y. J., & Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. *IEEE Transactions on Geoscience and Remote Sensing*, *30*(2), 261–270.
- Neto, J. C. (2004). A combined statistical-soft computing approach for classification and mapping weed species in minimum -tillage systems. *ETD Collection for University of Nebraska - Lincoln*. https://digitalcommons.unl.edu/dissertations/AAI3147135
- Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. *Remote Sensing of Environment*, 48(2), 119–126.
- Ray, T. W., Farr, T. G., Blom, R. G., & Crippen, R. E. (1993). Monitoring land use and degradation using satellite and airborne data.
- Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-Validation. *Encyclopedia of Database* Systems, 532–538. https://doi.org/10.1007/978-0-387-39940-9 565
- Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. *Photogrammetric Engineering and Remote Sensing*, 43(12), 1541–1552.
- Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. *Remote Sensing of Environment*, 55(2), 95–107.
- Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. *Remote Sensing of Environment*, 51(3), 375–384.
- Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt, Md, 371.
- Rusu, R. B. (2010). Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. KI - Künstliche Intelligenz 2010 24:4, 24(4), 345–348. https://doi.org/10.1007/S13218-010-0059-6
- Shimada, S., Matsumoto, J., Sekiyama, A., Aosier, B., & Yokohana, M. (2012). A new spectral index to detect Poaceae grass abundance in Mongolian grasslands. *Advances in Space Research*, 50(9), 1266–1273. https://doi.org/10.1016/J.ASR.2012.07.001
- Stricker, R., Müller, S., & Gross, H.-M. (2014). Non-contact video-based pulse rate measurement on a mobile service robot. *The 23rd IEEE International Symposium on Robot and Human Interactive Communication*, 1056–1062.
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. *Remote Sensing of Environment*, 8(2), 127–150.
- Vala, H. J., & Baxi, A. (2013). A Review on Otsu Image Segmentation Algorithm.
- West, K. F., Webb, B. N., Lersch, J. R., Pothier, S., Triscari, J. M., & Iverson, A. E. (2004). Context-driven automated target detection in 3D data. *Https://Doi.Org/10.1117/12.542536*, 5426, 133–143. https://doi.org/10.1117/12.542536
- Woebbecke, D. M., Meyer, G. E., von Bargen, K., & Mortensen, D. A. (1995). Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. *Transactions* of the ASAE, 38(1), 259–269. https://doi.org/10.13031/2013.27838

14