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1. Introduction 

Climate change, forest abandonment and changes in land use, are drivers of a 
greater frequency and intensity of forest fires around the world, causing ecological 
and socioeconomic damage to the population and their assets, with growing 
concern from national and regional governments (Dupuy et al., 2020). The 
behaviour of a wildfire is governed by three groups of factors: meteorological, 
topographic and those related to the structure and vegetation load. The first are 
related to temperature, rainfall, atmospheric moisture and wind, and they can only 
be measured or estimated at the moment or a few hours before the event. 
Topographic factors, such as slope, are usually available in advance, and they are 
basically stable. However, the factors related to the vegetation are variable in time 
and difficult to estimate at sufficient detail to be useful for fire prevention and fire 
behaviour models. These factors are related to the density and spatial distribution 
of vegetation, the forest vertical structure and composition, presence of gaps in 
vertical strata, fuel load and density, and fuel moisture. In order to characterize 
them, remote sensing data and methods can be used in different ways. Depending 
on the main methodologies and data types used, they can be classified in three 
main groups: 

a) Fuel type classification and mapping: consists on the categorization of 
vegetation structures based on a predefined classification system and for which 
a certain behavior against fire is assumed (Keane and Reeves, 2012). 

b) Estimation of fuel structure variables: generation of models to estimate 
quantitative variables affecting fire behaviour, such as canopy height, density, 
canopy base height, fuel load or canopy bulk density. 

c) Life fuel moisture content (LFMC) prediction models: generation of models 
allowing the estimation of the amount of water in live fuel (vegetation) which 



is potentially available to a fire. LFMC is an essential parameter for operational 
wildfire risk assessment and forest fire simulations, as it affects vegetation 
flammability, fire spread rate, and flame intensity. 

There are numerous fuel model classification systems. Traditionally, the 
mapping of fuel models was carried out through field work, entailing a high cost in 
time and financial resources (Arroyo et al., 2008). Currently, remote sensing 
techniques allow the mapping of fuel models on a large scale, with high precision 
and spatial resolution, and a lower economic and temporal cost. Some of them rely 
on the use of airborne LiDAR (Light Detection and Ranging) data and others 
combined with multispectral or hyperspectral satellite images. The integration of 
data from different active, such as LIDAR and SAR (Synthetic Aperture Radar), 
and passive (optical) sensors represents an opportunity to improve the 
characterization of forest fuels, in particular the updating of cartographies that 
become obsolete in a short time due to the numerous disturbances that affect the 
vegetation (fires, silvicultural treatment, felling and exploitation). In this sense, 
innovative algorithms that combine data with different spatial and temporal 
resolutions to generate easy updated dynamic maps are needed.  

Forest structure refers to the three-dimensional distribution and 
arrangement of the elements composing a forest (species, density, size, variety, 
height strata, etc.). Different field measurements are traditionally needed to 
characterize forest structure and, more recently, indirect estimations using remote 
sensing techniques (optical, multispectral, hyperspectral and radar imagery, and 
LiDAR) are introduced. Unlike two-dimensional imagery, the vertical component 
of three-dimensional LiDAR data allows to study the surface and the interior of 
canopies, providing valuable information to characterize forest structure. Accurate 
information about three-dimensional canopy structure and wildland fuel across the 
landscape is necessary for fire behaviour modelling system predictions. Fuel 
variables such as crown bulk density, crown fuel weight, and crown base height are 
by nature vertically organized through the canopy, and they have been estimated 
and modelled using discrete LiDAR data (Andersen et al., 2005), full-waveform 
LiDAR (Hermosilla et al., 2014) or combined with satellite images (Erdody and 
Moskal, 2010). Understory vegetation is also crucial for wildfire management, 
since it serves as ladder fuel for fire propagation, and its estimation has been 
achieved by combining discrete LiDAR and orthoimages (Riaño et al., 2007) or 
using full-waveform LiDAR (Crespo-Peremarch et al., 2018; Crespo-Peremarch 
and Ruiz, 2020). Remotely sensed data are invaluable for assessing these canopy 
characteristics over large areas; LiDAR data, in particular, are uniquely suited for 
quantifying three-dimensional canopy structure (Wulder et al., 2012). 

One of the most important factors to consider in relation to the risk of 
occurrence and potential behavior of forest fires is the live fuel moisture content 



(LFMC), defined as the amount of water present in the vegetation and calculated 
as the percentage of the mass of water contained in the species relative to its dry 
weight, which is associated with the water stress of the vegetation. It is directly 
related to the amount of energy required to evaporate the water before ignition 
(Jolly and Johnson, 2018). Recently, remote sensing has been used to estimate the 
moisture content of live fuel based on spectral, meteorological, and topographic 
data. However, despite the importance of wildfires, there is currently no specific 
method to reliably estimate LFMC variability at large scales. Therefore, it is 
necessary to analyze and define a solid methodology, based on the combination of 
different data sources (remote sensing, meteorology, etc.), for the operational and 
reliable estimation of LFMC. 

The objective of this study is to analyze the methods, potential and 
limitations of the use of remote sensing in fuel characterization, in particular 
forest type, forest structure and fuel moisture, having in mind the importance of 
this in wildfire prevention. The datasets used are satellite multispectral images, 
airborne LiDAR, field collected data and meteorological data, all of them from 
Easter Mediterranean areas of Spain. 

 
2. Materials and Methods  

Two main study areas were considered, both in the Eastern Mediterranean 
region of Spain. The first one is located in the Natural Park of Sierra de Espadán, 
in the province of Castellón, a Mediterranean forest with soft and rounded hills, 
presence of abandoned farming with artificial terraces, and mountain peaks up to 
1100 meters of altitude. This area displays a heterogeneous landscape dominated 
by pure and mixed native coniferous and deciduous forests, with species of the 
genera Pinus and Quercus. The most dominant species in the area are Pinus 
halepensis (Aleppo pine), P. pinaster (Maritime pine) and mixed stands with 
Quercus suber (cork oak) as codominant species at the upper strata. Understory 
vegetation presence and density are very heterogeneous in this ecosystem, the most 
common are Erica, Genista, Rhamnus, Pistacia, Juniperus, Rosmarinus, Quercus, 
Phillyrea, Daphne and Thymus. The second study area is the whole Valencian 
region of Spain, in the east of the Iberian Peninsula. The orography ranges from 0 
to 1830 m of altitude above sea level, although most of the territory lies at altitudes 
below 1000 meters. In addition, the region presents a Mediterranean climate 
characterized by hot summers and mild winters, with low rainfall (350 550 mm 
per year). 

2.1Forest type classification and mapping 

A field data campaign was done in September 2015, as part of a complete 
forest inventory data collection, where standard forest inventory measurements 



(DBH, tree heights, and number of trees) were registered in 80 circular plots (15 m 
radius), as well as descriptive information concerning types of vegetation and 
strata. Four generic vegetation strata were differentiated (Figure 1): 

(a) Forest: composed by P. pinaster and P. halepensis, often combined with Q. 
suber, with no understory vegetation (Figure 1a). 

(b) Mixed forest: combination of pines and shrub, with a dense understory layer 
(Figure 1b). 

(c) Shrub: dense shrub species, sometimes with isolated trees (Figure 1c). 

(d) Young forest: dense concentration of young P. halepensis trees, distributed in 
patches as a result of spontaneous regeneration after wildfires (Figure 1d).  

 

Figure 1: Examples of four generic fuel strata characterized for 
classification: (a) forest; (b) mixed forest; (c) shrub; (d) young forest  
Source: Ruiz et al., (2018) 
 

LiDAR data were used with an average density of 0.5 pulses m , a 
WorldView-2 eight bands multispectral image (2 m/pixel), and a Sentinel-2 image 
with thirteen spectral bands (10, 20 and 60 m/pixel). First step consisted of the 
segmentation of objects with a multiresolution algorithm, using a normalized 
digital surface model (nDSM) obtained from LiDAR and the normalized difference 
vegetation index (NDVI) from WorldView-2. Feature extraction was performed 
using two free software programmes: FUSION 3.5 (McGaughey, 2015) and 
FETEX 2.0 (Ruiz et al., 2011).Classification of the generic structural types 
mentioned was done using four classification algorithms: C4.5 decision trees, 
Random Forest, k-Nearest-Neighbours and Support Vector Machine, using LiDAR 
features (L); Sentinel-2 and LiDAR (S2+L); WorldView-2 and LiDAR (WV2+L); 
and all features (S2+WV2+L), they were compared and evaluated using cross-
validation (see Ruiz et al., 2018 for details). 
 
2.2 Estimation of fuel structure variables 

Field data collected were standard inventory measurements. They were 
further used to estimate, through allometric equations, three canopy fuel variables: 
canopy fuel load (CFL), canopy base height (CBH), and canopy height (CH). 



LiDAR data were acquired in September 2015 using a LiteMapper 6800, with an 
average pulse density of 14 pulses·m-2, and then processed using the free software 
tool WoLFeX (Crespo-Peremarch and Ruiz, 2020), consisting of: (a) height 
normalization; (b) denoising; (c) voxelization; (d) generation of pseudo-vertical 
waveforms; and (e) metric extraction (Ruiz et al., 2021). Canopy fuel variables 
prediction models were done using multiple linear regression, with a maximum of 
three LiDAR metrics as independent variables to avoid overfitting. Models were 
evaluated using cross-validation, the adjusted R2 and the root mean square error 
(RMSE). 
 
2.3 Modelling Life fuel moisture content 

Field fuel samples were collected in 88 specific plots of shrubs and trees of 
the study area every 15 days from June 2020 to November 2021. They were 
transported in sealed bags and weighted wet, then oven-dr
and weighed again to obtain the dry weight and LFMC. Plot location was based on 
an even representation of different bioclimatic zones, the thermo-Mediterranean 
group (group 1) and the meso-Mediterranean group (group 2). Sentinel-2 time 
series images (level 2A) were processed using Google Earth Engine, and five 
vegetation indices and two water indices were computed. Daily mean surface air 
temperature and cumulative daily precipitation, collected from the Spanish 
Meteorological Agency (AEMET) at weather stations for the years 2020 and 2021 
were used and interpolated using the inverse distance weighted method. The 
computed variables were: p60 (cumulative precipitation in the 60 days prior to 
field LFMC data acquisition) and t60 (average mean daily air temperatures in the 
60 days prior to field LFMC data acquisition). In addition, the day of the year 
(DOY) was also considered, to describe seasonal variations of the LFMC. The 
following methodological steps were applied: (1) Analysis of LFMC differences 
between shrub and tree strata and its influence on the weighted LFMC mean, using 
the weighted fraction of canopy cover (FCC) of each species. (2) Application of 
stepwise linear regression to predict LFMC, (3) Evaluation of linear regression 
models using cross-validation, adjusted R2 and RMSE values. (4) Mapping LFMC 
estimates in the Valencian region using the designed model (see more details in 
Arcos et al., 2023). 
 

3. Results and discussion 

3.1 Forest type classification and mapping 

All methods, except for SVM, performed well classifying the generic forest 
fuel types, ranging from 86.76% to 90.75% of overall accuracy. Combining LiDAR 
data and multispectral images produced good overall accuracy classification results, 



and 90.75% of accuracy was obtained combining the three data sets (WV2 + S2 + 
L). The use of LiDAR provides information about the height distribution of the 
canopy layers, the results show the convenience to combine LiDAR data with high-
resolution multispectral images (WV2) in order to discriminate class forest with a 
minimum of confidence level. The object-based approach used facilitates the 
delineation of patches with specific structural types existing in the landscape.  

 
3.2 Estimation of fuel structure variables 
The highest accuracy estimating canopy fuel variables was achieved for variables 
related to height, such as canopy height and canopy base height, with R2=90.5% 
(RMSE=1.15 m) and 90.6% (RMSE=0.88 m), respectively. On the other hand, 
canopy fuel load had a lower but still high accuracy, with R2=77.4% and 
RMSE=3.81 Mg·ha-1. Canopy fuel variables related to height were estimated more 
accurately than canopy fuel load. Estimation of canopy fuel variables is crucial for 
the prevention, prediction and mitigation of wildfires. These variables influence fire 
behavior and how it can evolve from a ground or surface fire to a crown fire, that are 
the main threat to ecological and human values. Airborne LiDAR has proven to be a 
powerful tool to estimate these variables accurately and more efficiently than 
traditional methods. 
 
3.3 Modelling Life fuel moisture content 

The number of explanatory variables used in the selected multiple linear 
regression models varied between 4 and 6, being the most important the normalized 
multi-band drought index (NMDI), p60 and DOY_SIN. Figure 2 shows the results 
of the models for the combinations of shrub, trees, and the two bioclimatic zones 
considered. The adjusted R2 values of the models ranged from 56% to 76%. The 
highest percentage was presented by the model of Group 1 where tree species were 
dominant. RMSE values ranged from 7.4 and 13.1. 

 
 
 
 
 
 



(a)                             (b)                                 (c)                                   (d) 

Figure 2: Predicted vs observed LFMC values: (a) Shrub, group 1; (b) Shrub, 
group 2; (c) Trees, group 1; (d) Trees, group 2. Line y=x (black), regression line 
(red), grey area: 95% confidence level  

Source: Arcos et al., (2023)  

Figure 3 shows the temporal evolution of observed vs predicted LFMC 
values in two plots of shrub and trees, both from bioclimatic group 1. In both, the 
prediction is adapted to the real change. However, while in shrub there are clear 
seasonal variations of LFMC, in trees areas these variations are lower.  

 

(a)                                                                      (b) 

Figure 3: Seasonal variations of observed (green) vs predicted (red) in two plots 
of shrub (a) and trees (b). Discontinuous lines show 95% of confidence level 
limits  

Source: Arcos et al., (2023) 

4. Conclusions 

Remote sensing methods based on airborne LiDAR data, multispectral 
satellite images and meteorological data have been applied over a Mediterranean 
forest area of easter Spain to generate classification models of generic fuel types, 
and prediction models of forest structure variables and live fuel moisture content. 



The application of these models allows for the generation of maps of useful 
variables at different scales, with known accuracy levels, which can be used by 
forest managers to predict the risk of wildfire risk and to prevent these natural 
disasters that are becoming more and more destructive in many areas around the 
world. 
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